【647. 回文子串】动态规划

该文章介绍了一种使用动态规划解决LeetCode上的问题,计算给定字符串中回文子串的数量。通过一个二维布尔数组dp,记录字符串中每个子串是否为回文,从下到上,从左到右遍历,确保在判断过程中使用的是已计算过的子问题结果。
摘要由CSDN通过智能技术生成

https://leetcode.cn/problems/palindromic-substrings/

题目要求

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

动态规划

class Solution {
    public int countSubstrings(String s) {
        int n, res = 0;
        if (s == null || (n = s.length()) < 1) return 0;
        // dp[i][j]:s字符串下标i到下标j的字串是否是一个回文串,即s[i, j]
        boolean[][] dp = new boolean[n][n];
        for (int j = 0; j < n; j++) {
            for (int i = 0; i <= j; i++) {
                // 当两端字母一样时,才可以两端收缩进一步判断
                if (s.charAt(i) == s.charAt(j)) {
                    // i++,j--,即两端收缩之后i,j指针指向同一个字符或者i超过j了,必然是一个回文串
                    if (j - i < 3) {
                        dp[i][j] = true;
                    } else {
                        // 否则通过收缩之后的字串判断
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                } else {// 两端字符不一样,不是回文串
                    dp[i][j] = false;
                }
            }
        }
        // 遍历每一个字串,统计回文串个数
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (dp[i][j]) res++;
            }
        }
        return res;
    }
}
  • dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  • 确定递推公式

    • s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

    • 当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

      • 情况一:下标 i 与 j 相同,同一个字符例如a,当然是回文子串
      • 情况二:下标 i 与 j 相差为1,例如aa,也是回文子串
      • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
      if (s[i] == s[j]) {
          if (j - i <= 1) { // 情况一 和 情况二
              result++;
              dp[i][j] = true;
          } else if (dp[i + 1][j - 1]) { // 情况三
              result++;
              dp[i][j] = true;
          }
      }
      
  • 遍历顺序

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值