数字三角形问题(动态规划)

题目:

 在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99。

输入格式:

    5      //表示三角形的行数    接下来输入三角形

    7

    3   8

    8   1   0

    2   7   4   4

    4   5   2   6   5

要求输入最大和

思路:

用D[i][j]存储点(i,j),maxsum[i][j]存储点(i,j)到底边路径的最大和。由于点(i,j)只能向(i+1,j)和(i+1,j+1)走,理所当然的知道要选择到底边和最大的那个点走(是到底边和最大的点,而不是数大的点);最后一行的maxsum和D相等(不用走,就是自己本身),所以就有递推公式:

if i == n(最后一行)
maxsum[i][j] = D[i][j];
else
maxsum[i][j] = max(maxsum[i+1][j],maxsum[i+1][j+1]) +D[i][j]

初始状态为底边数字,值为底边数字值。

从最后一行往上计算,算完的值存在maxsum中.

代码:

#include <iostream>
#include <algorithm>
using namespace std;

int D[20][20];
int n;
int maxsum[20][20];
/*递归法
int MaxSum(int i,int j)
{
    //表示已经计算过这个值了,可以直接取 不用重复计算
    if( maxsum[i][j] != -1 )
		return maxsum[i][j];
		//最后一行
    if(i == n-1)
        maxsum[i][j] = D[n-1][j];

    else{
        maxsum[i][j] =max(MaxSum(i+1,j+1),MaxSum(i+1,j))+D[i][j];
    }
    return maxsum[i][j];
}
*/

int main()
{

    cin >> n;
    for(int i = 0;i < n;i++)
        for(int j = 0;j <= i;j++)
            {cin >> D[i][j];
            maxsum[i][j] = -1; }
   //递推法,从下往上计算
    for(int j = 0;j < n;j++)
        maxsum[n-1][j] = D[n-1][j];
    for(int i = n-2;i>=0;i--)
        for(int j = 0;j <=i;j++)
            maxsum[i][j] = max(maxsum[i+1][j],maxsum[i+1][j+1])+D[i][j];
    cout << maxsum[0][0];

    return 0;
}

要点:

递归法为从上往下计算;而动态规划(递推法)是从下往上计算,无重复,一次到顶。

### 回答1: 数字三角形问题是一个经典的动态规划问题,可以使用动态规划算法来解决。 假设有一个数字三角形,如下图所示: ``` 5 9 6 4 6 8 0 7 1 5 ``` 从最上面的数字开始,每次可以向下走一层,只能走到相邻的数字上。例如,从5开始,可以走到9或6,但不能走到4或7。要求从最上面走到最下面,使得经过的数字之和最大。在上面的例子中,最大的和是5 + 9 + 6 + 7 = 27。 假设 $f[i][j]$ 表示从第 $i$ 行第 $j$ 列出发,走到最后一行的最大和,则有状态转移方程: $$f[i][j] = max(f[i+1][j], f[i+1][j+1]) + a[i][j]$$ 其中 $a[i][j]$ 表示数字三角形中第 $i$ 行第 $j$ 列的数字。 最终的答案即为 $f[1][1]$。 具体实现可以使用一个二维数组来存储 $f[i][j]$ 的值,从最后一行开始向上递推,最终得到 $f[1][1]$ 的值。 ### 回答2: 数字三角形问题是一个经典的动态规划问题。给定一个由数字组成的三角形,从三角形的顶部出发,每次只能向下走一层,可以选择走到下方相邻的数字。要求找出一条从顶部到底部的路径,使得路径上经过的数字之和最大。 我们可以使用动态规划思想来解决这个问题。首先,我们定义一个和原始三角形大小相同的二维数组dp,其中dp[i][j]表示从顶部到位置(i, j)的路径上的数字之和的最大值。初始化dp数组的第一行和第一列与原始三角形的对应位置相同。 然后,我们从第二行开始,逐行计算dp数组的值。对于每个位置(i, j),它可以由上一行的相邻两个位置(i-1, j-1)和(i-1, j)到达。因此,我们可以得到状态转移方程: dp[i][j] = max(dp[i-1][j-1], dp[i-1][j]) + triangle[i][j] 其中,triangle[i][j]表示原始三角形中位置(i, j)处的数字。 最后,我们只需要在dp的最后一行中找到最大值,即为路径的最大数字之和。这个值就是问题的解。 总结起来,数字三角形问题使用动态规划思想可以高效地求解。通过定义dp数组,利用状态转移方程逐行计算,可以求得路径的最大数字之和。这个动态规划的过程时间复杂度为O(n^2),其中n为三角形的行数。 ### 回答3: 数字三角形问题是一个经典的动态规划问题,其解决思路可以通过自底向上的方式进行求解。 首先,我们定义一个二维数组dp,其中dp[i][j]表示从第i行第j列的数字出发,到达底部的最大路径和。那么,我们可以得到递推关系如下:dp[i][j] = triangle[i][j] + max(dp[i+1][j], dp[i+1][j+1]),即到达当前位置的最大路径和等于当前位置的值加上下一行相邻两个位置中路径和较大的值。 通过上述递推关系,我们可以从倒数第二行开始,一直计算到第一行,最终得到dp[0][0]即为整个数字三角形的最大路径和。 具体算法实现过程如下: 1. 初始化dp数组,将dp的最后一行填充为数字三角形的最后一行。 2. 从倒数第二行开始,依次遍历每一行。 3. 在每一行的遍历过程中,计算每个位置的最大路径和,并更新dp数组。 4. 最终,dp[0][0]即为数字三角形的最大路径和。 例如,对于如下的数字三角形: [ [7], [3, 8], [8, 1, 0], [2, 7, 4, 4] ] 按照上述算法进行计算,最终得到的dp数组如下: [ [23], [20, 13], [10, 13, 10], [2, 7, 4, 4] ] 最终的结果为23,即数字三角形的最大路径和。 通过动态规划的思路,我们可以高效地解决数字三角形问题,时间复杂度为O(n^2),其中n为数字三角形的行数。这种方法能够避免重复计算,并且空间复杂度较低。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值