题目:
在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99。
输入格式:
5 //表示三角形的行数 接下来输入三角形
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
要求输入最大和
思路:
用D[i][j]存储点(i,j),maxsum[i][j]存储点(i,j)到底边路径的最大和。由于点(i,j)只能向(i+1,j)和(i+1,j+1)走,理所当然的知道要选择到底边和最大的那个点走(是到底边和最大的点,而不是数大的点);最后一行的maxsum和D相等(不用走,就是自己本身),所以就有递推公式:
if i == n(最后一行)
maxsum[i][j] = D[i][j];
else
maxsum[i][j] = max(maxsum[i+1][j],maxsum[i+1][j+1]) +D[i][j]
初始状态为底边数字,值为底边数字值。
从最后一行往上计算,算完的值存在maxsum中.
代码:
#include <iostream>
#include <algorithm>
using namespace std;
int D[20][20];
int n;
int maxsum[20][20];
/*递归法
int MaxSum(int i,int j)
{
//表示已经计算过这个值了,可以直接取 不用重复计算
if( maxsum[i][j] != -1 )
return maxsum[i][j];
//最后一行
if(i == n-1)
maxsum[i][j] = D[n-1][j];
else{
maxsum[i][j] =max(MaxSum(i+1,j+1),MaxSum(i+1,j))+D[i][j];
}
return maxsum[i][j];
}
*/
int main()
{
cin >> n;
for(int i = 0;i < n;i++)
for(int j = 0;j <= i;j++)
{cin >> D[i][j];
maxsum[i][j] = -1; }
//递推法,从下往上计算
for(int j = 0;j < n;j++)
maxsum[n-1][j] = D[n-1][j];
for(int i = n-2;i>=0;i--)
for(int j = 0;j <=i;j++)
maxsum[i][j] = max(maxsum[i+1][j],maxsum[i+1][j+1])+D[i][j];
cout << maxsum[0][0];
return 0;
}
要点:
递归法为从上往下计算;而动态规划(递推法)是从下往上计算,无重复,一次到顶。