题意:
给你一个对应的转换表,这个转化表是明文对应的暗文表,也就是第一字母对应‘a’,第二个字母对应‘b’,然后给一个字符串,这个字符串的前一部分是暗文后一部分是明文(将暗文翻译成明文后这两部分字符串其实是一样的),但是后面一部分的明文可能不完整了,但不知道分界线从哪里,要我们打印出完整的暗文+明文
思路:
- 先把a全部都当作是密文的,然后把a全转换成明文,保存为 b
- 这时,a中的密文部分就全部都变成了明文,而明文部分(不用管是什么)。
- 然后可以发现,原来的a中的明文部分是a的后缀,而b中的明文部分是a的前缀。
- 所以,演变成了求a[i....n]与b的最长公共前缀,就是赤裸的拓展KMP问题了。
i+extend[i] 为重复子串的长度
假设暗文和明文的分界点位置为k,发现其k+extend[k]恰好就到达了串的长度len,即k+entend[k]>=len,同时说明k前面都是暗文,那么k>=extend[k],因为extend[k](extend[k]为字符串转换前的明文后缀 与 字符串转换后的完整的明文前缀的匹配长度)最长也就是等于前面暗文的长度(明文最多跟暗文一样长),所以k一定在这当中数组要开大点,100010会wr
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define mod 10007
using namespace std;
typedef long long ll;
const int maxn=1000010;
int ex[maxn],nxt[maxn];
char s[maxn],a[maxn],b[maxn];
int h[maxn]; //存放明文对应的暗文的ASCII值
void getnxt(char *str)
{
int i=0,j,po,len=strlen(str);
nxt[0]=len;//初始化next[0]
while(str[i]==str[i+1]&&i+1<len)//计算next[1]
i++;
nxt[1]=i;
po=1;//初始化po的位置
for(i=2;i<len;i++)
{
if(nxt[i-po]+i<nxt[po]+po)//第一种情况,可以直接得到next[i]的值
nxt[i]=nxt[i-po];
else//第二种情况,要继续匹配才能得到next[i]的值
{
j=nxt[po]+po-i;
if(j<0)j=0;//如果i>po+next[po],则要从头开始匹配
while(i+j<len&&str[j]==str[j+i])//计算next[i]
j++;
nxt[i]=j;
po=i;//更新po的位置
}
}
}
//计算extend数组
void EXKMP(char *s1,char *s2)
{
int i=0,j,po,len=strlen(s1),l2=strlen(s2);
getnxt(s2);//计算子串的next数组
while(s1[i]==s2[i]&&i<l2&&i<len)//计算ex[0]
i++;
ex[0]=i;
po=0;//初始化po的位置
for(i=1;i<len;i++)
{
if(nxt[i-po]+i<ex[po]+po)//第一种情况,直接可以得到ex[i]的值
ex[i]=nxt[i-po];
else//第二种情况,要继续匹配才能得到ex[i]的值
{
j=ex[po]+po-i;
if(j<0)j=0;//如果i>ex[po]+po则要从头开始匹配
while(i+j<len&&j<l2&&s1[j+i]==s2[j])//计算ex[i]
j++;
ex[i]=j;
po=i;//更新po的位置
}
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%s %s",s,a);
int len = strlen(a);
for(int i=0;s[i];i++)
h[s[i]] = i+'a';
memset(b,0,sizeof(b));
for(int i=0;a[i];i++)
b[i] = h[a[i]]; //转换后的字符串
EXKMP(a,b);
int ma = len; //防止明文长度为 0 的情况
for(int i=0;i<len;i++)
{
if(i+ex[i]>=len && i>=ex[i])
{
ma = i;
break;
}
}
memset(b,0,sizeof(b));
for(int i=0;i<ma;i++)
{
b[i] = a[i]; //暗文
b[ma+i] = h[a[i]]; //明文
}
puts(b);
}
return 0;
}