4.盛最多水的容器(中等)

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。
在这里插入图片描述
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例:

输入:[1,8,6,2,5,4,8,3,7]
输出:49

PS:这道题没做出来,最后看的别人的题解

思路:
       算法流程: 设置双指针 i,j 分别位于容器壁两端,根据规则移动指针(后续说明),并且更新面积最大值 res,直到 i == j 时返回 res。

指针移动规则与证明: 每次选定围成水槽两板高度 h[i],h[j] 中的短板,向中间收窄 1 格。以下证明:

设每一状态下水槽面积为 S(i, j)(0 <= i < j < n),由于水槽的实际高度由两板中的短板决定,则可得面积公式 S(i, j) = min(h[i], h[j]) × (j - i)。在每一个状态下,无论长板或短板收窄 1 格,都会导致水槽 底边宽度 -1:

       若向内移动短板,水槽的短板 min(h[i], h[j]) 可能变大,因此水槽面积 S(i, j) 可能增大。
       若向内移动长板,水槽的短板 min(h[i], h[j]) 不变或变小,下个水槽的面积一定小于当前水槽面积。

       因此,向内收窄短板可以获取面积最大值。换个角度理解:
若不指定移动规则,所有移动出现的 S(i, j) 的状态数为 C(n, 2),即暴力枚举出所有状态。
在状态 S(i, j) 下向内移动短板至 S(i + 1, j)(假设 h[i] < h[j] ),则相当于消去了 {S(i, j - 1), S(i, j - 2), … , S(i, i + 1)} 状态集合。而所有消去状态的面积一定 <= S(i, j):
短板高度:相比 S(i, j) 相同或更短(<= h[i]);
底边宽度:相比 S(i, j) 更短。
因此所有消去的状态的面积都 < S(i, j)。通俗的讲,我们每次向内移动短板,所有的消去状态都不会导致丢失面积最大值 。

复杂度分析:

时间复杂度 O(N),双指针遍历一次底边宽度 N 。
空间复杂度 O(1),指针使用常数额外空间。

class Solution:
    def maxArea(self, height: List[int]) -> int:
        '''
        双指针法:
        初始 i 在数据最左端,j 在数组最右端,得到初始最大能容纳的水,然后比较i和j的高度,
        将较矮的一方往中间移动一个位置,算出此时能容纳的水,并将其与最大能容纳的水比较
        并更新
        将较矮的一方往中间移动一个位置的数学原理:假设之前i、j的高度分别为:x,y 
        
        '''
        i = 0
        j = len(height) - 1
        res_max = min(height[i], height[j]) * (j - i)
        while i < j:
            if height[i] < height[j]:
                i += 1
            else:
                j -= 1
            cur_max = min(height[i], height[j]) * (j - i)
            if cur_max > res_max:
                res_max = cur_max
        return res_max

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值