二次剩余(简单理解)

二次剩余

定义

p p p是一个奇素数。
x 2 ≡ n ( m o d   p ) x^2\equiv n(mod~p) x2n(mod p)
判断n是否有解勒让德符号 ≡ \equiv 欧拉判别准则。

勒让德符号
( n p ) = { 1 p ∤ n   ∧   n 是 p 的 二 次 剩 余 − 1 p ∤ n   ∧   n 不 是 p 的 二 次 剩 余 0 p ∣ n \left(\frac {n}{p}\right)=\begin{cases}1& p\nmid n~\wedge~n是p的二次剩余\\ -1&p\nmid n~\wedge~n不是p的二次剩余\\ 0&p\mid n \end{cases} (pn)=110pn  nppn  nppn
在区间 [ 1 , p − 1 ] [1,p-1] [1,p1]中存在解的数称为 p p p的二次剩余,有 p − 1 2 \frac {p-1}{2} 2p1个。

欧拉判别式:
( n p ) ≡ n ( p − 1 ) 2 ( m o d   p ) \left(\frac {n}{p}\right)\equiv n^\frac{(p-1)}2(mod~p) (pn)n2(p1)(mod p)
简单理解:
n ( p − 1 ) 2 ≡ ( n ( p − 1 ) ) 1 2 ( m o d   p ) ≡ 1 ≡ ± 1 ( m o d   p ) n^\frac {(p-1)}2\equiv(n^{(p-1)})^\frac 12(mod~p)\equiv \sqrt1\equiv\pm1(mod~p) n2(p1)(n(p1))21(mod p)1 ±1(mod p)
等于-1时无解,所以此时n不是p的二次剩余


Cipolla 算法(求解算法)

理解类似复数域的东西。

i = − 1 i=\sqrt{-1} i=1 ,而 n n n可能在模 p p p的情况下得不到整数解,所以我们也弄一个复数域。

就像是当 n n n不是 p p p的二次剩余的时候,我们设 w 2 ≡ n w^2\equiv n w2n


当n是p的二次剩余时,我们找到一个数 a a a使 ( a 2 − n ) (a^2-n) (a2n)不是p的二次剩余, w 2 ≡ ( a 2 − n ) w^2\equiv(a^2-n) w2(a2n)。则 x 2 ≡ n ( m o d   p ) x^2\equiv n(mod~p) x2n(mod p)的解是 ( a − w ) ( p + 1 ) 2 (a-w)^\frac {(p+1)}2 (aw)2(p+1)

证明:

先证明一些小定理:

定理1: ( a + b ) p ≡ a p + b p (a+b)^p\equiv a^p+b^p (a+b)pap+bp
( a + b ) p ≡ ∑ i = 0 p C p i a p − i b i ≡ ∑ i = 0 p p ! i ! ( p − i ! ) a p − i b i ≡ a p + b p ( m o d   p ) \begin{aligned}(a+b)^p&\equiv\sum_{i=0}^pC_p^ia^{p-i}b^i\\ &\equiv\sum_{i=0}^p\frac {p!}{i!(p-i!)}a^{p-i}b^i\\ &\equiv a^p+b^p(mod~p) \end{aligned} (a+b)pi=0pCpiapibii=0pi!(pi!)p!apibiap+bp(mod p)
​ 定理2: w p ≡ − w ( m o d   p ) w^p\equiv-w(mod~p) wpw(mod p)
w p ≡ w p − 1 w ≡ ( w 2 ) p − 1 2 w ≡ ( n ) p − 1 2 w ≡ − w \begin{aligned} w^p&\equiv w^{p-1}w\\ &\equiv(w^2)^{\frac {p-1}2}w\\ &\equiv(n)^\frac {p-1}2w\\ &\equiv-w\\ \end{aligned} wpwp1w(w2)2p1w(n)2p1ww
证明: x 2 ≡ n ( m o d   p ) x^2\equiv n(mod~p) x2n(mod p)的解是 ( a − w ) ( p + 1 ) 2 (a-w)^\frac {(p+1)}2 (aw)2(p+1),设 w 2 = ( a 2 − n ) w^2=(a^2-n) w2=(a2n)
x ≡ ( a − w ) p + 1 2 ≡ ( ( a − w ) p + 1 ) 1 2 ≡ ( ( a − w ) p ( a − w ) ) 1 2 ≡ ( ( a p − w p ) ( a − w ) ) 1 2 ≡ ( ( a + w ) ( a − w ) ) 1 2 ≡ ( a 2 − w 2 ) 1 2 ≡ ( a 2 − ( a 2 − n ) ) 1 2 ≡ n 1 2 ( m o d   p ) \begin{aligned} x&\equiv(a-w)^\frac {p+1}2\\ &\equiv((a-w)^{p+1})^\frac 12\\ &\equiv((a-w)^{p}(a-w))^\frac 12\\ &\equiv((a^p-w^p)(a-w))^\frac 12\\ &\equiv((a+w)(a-w))^\frac 12\\ &\equiv(a^2-w^2)^\frac 12\\ &\equiv(a^2-(a^2-n))^\frac 12\\ &\equiv n^\frac 12(mod~p)\\ \end{aligned} x(aw)2p+1((aw)p+1)21((aw)p(aw))21((apwp)(aw))21((a+w)(aw))21(a2w2)21(a2(a2n))21n21(mod p)
∴ x ≡ ( a + w ) ( p + 1 ) 2 ≡ ( m o d   p ) \therefore x\equiv(a+w)^{\frac {(p+1)}2}\equiv(mod~p) x(a+w)2(p+1)(mod p)


模板题

【模板】二次剩余

#include<bits/stdc++.h>

using namespace std;
mt19937_64 gen(time(0));
typedef long long ll;

ll n, mod, w;

ll qpow(ll x, ll y) {
    ll ans = 1;
    while(y) {
        if(y & 1) ans = ans * x % mod;
        x = x * x % mod;
        y >>= 1;
    }
    return ans;
}

struct Y {
    ll x, y;
    Y operator * (const Y & a) {
        Y tmp;
        tmp.x = (x * a.x % mod + y * a.y % mod * w % mod) % mod;
        tmp.y = (x * a.y % mod + y * a.x % mod) % mod;
        return tmp; 
    }
    Y operator + (const Y & a) {
        Y tmp;
        tmp.x = (x + a.x) % mod;
        tmp.y = (y + a.y) % mod;
        return tmp;
    }
};

Y ksm(Y a, ll x) {
    Y ans = {1, 0};
    while(x) {
        if(x & 1) ans = ans * a;
        a = a * a;
        x >>= 1;
    }
    return ans;
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    int t;
    scanf("%d", &t);
    while(t--) {
        scanf("%lld%lld", &n, &mod);
        n %= mod;
        if(n == 0) printf("0\n");
        else if(qpow(n, (mod-1)/2) == mod-1) puts("Hola!");
        else {
            ll tmp;
            while(1) {
                tmp = gen() % mod;
                w = (tmp * tmp % mod - n + mod) % mod;
                if(qpow(w, (mod-1)/2) == mod-1) break;
            }
            Y a = {tmp, 1};
            a = ksm(a, (mod+1)/2);
            tmp = mod - a.x;
            if(tmp == a.x) cout << a.x << endl;
            else cout << min(tmp, a.x) << ' ' << max(tmp, a.x) << endl;
        }
    }
    return 0;
}
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值