学习尚硅谷韩顺平老师的Java数据结构笔记,详情请移步网站
1、算法介绍
(1) KMP 是一个解决模式串在文本串是否出现过,如果出现过,最早出现的位置的经典算法
(2) Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP 算法”,常用于在一个文本串 S 内查找一个模式串 P 的出现位置,这个算法由 Donald Knuth、Vaughan Pratt、James H. Morris 三人于 1977 年联合发表,故取这 3 人的姓氏命名此算法.
(3) KMP 方法算法就利用之前判断过信息,通过一个 next 数组,保存模式串中前后最长公共子序列的长度,每次回溯时,通过 next 数组找到,前面匹配过的位置,省去了大量的计算时间
2、字符串匹配
字符串匹配问题:
(1) 有一个字符串 str1= “BBC ABCDAB ABCDABCDABDE”,和一个子串 str2=“ABCDABD”
(2) 现在要判断 str1 是否含有 str2, 如果存在,就返回第一次出现的位置, 如果没有,则返回-1
(3) 要求:使用 KMP 算法完成判断,不能使用简单的暴力匹配算法.
思路分析图解:
举例来说,有一个字符串 Str1 = “BBC ABCDAB ABCDABCDABDE”,判断,里面是否包含另一个字符串 Str2 =“ABCDABD”?
- 首先,用 Str1 的第一个字符和 Str2 的第一个字符去比较,不符合,关键词向后移动一位
- 重复第一步,还是不符合,再后移
- 一直重复,直到 Str1 有一个字符与 Str2 的第一个字符符合为止
- 接着比较字符串和搜索词的下一个字符,还是符合。
- 遇到 Str1 有一个字符与 Str2 对应的字符不符合。
- 这时候,想到的是继续遍历 Str1 的下一个字符,重复第 1 步。(其实是很不明智的,因为此时 BCD 已经比较过了, 没有必要再做重复的工作,一个基本事实是,当空格与 D 不匹配时,你其实知道前面六个字符是”ABCDAB”。KMP 算法的想法是,设法利用这个已知信息,不要把”搜索位置”移回已经比较过的位置,继续把它向后移,这样就提高了效率。)
- 怎么做到把刚刚重复的步骤省略掉?可以对 Str2 计算出一张《部分匹配表》,这张表的产生在后面介绍
- 已知空格与 D 不匹配时,前面六个字符”ABCDAB”是匹配的。查表可知,最后一个匹配字符 B 对应的”部分匹配值”为 2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值因为 6 - 2 等于 4,所以将搜索词向后移动 4 位。 - 因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为 2(”AB”),对应的”部分匹配值” 为 0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移 2 位。
- 因为空格与 A 不匹配,继续后移一位。
- 逐位比较,直到发现 C 与 D 不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动 4 位。
- 逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配), 移动位数 = 7 - 0,再将搜索词向后移动 7 位,这里就不再重复了。
- 介绍《部分匹配表》怎么产生的先介绍前缀,后缀是什么
“部分匹配值”就是”前缀”和”后缀”的最长的共有元素的长度。以”ABCDABD”为例,
-”A”的前缀和后缀都为空集,共有元素的长度为 0;
-”AB”的前缀为[A],后缀为[B],共有元素的长度为 0;
-”ABC”的前缀为[A, AB],后缀为[BC, C],共有元素的长度 0;
-”ABCD”的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为 0;
-”ABCDA”的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为 1;
-”ABCDAB”的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为”AB”,
长度为 2;
-”ABCDABD”的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD,
D],共有元素的长度为 0。
14.”部分匹配”的实质是,有时候,字符串头部和尾部会有重复。比如,”ABCDAB”之中有两个”AB”,那么它的”部分匹配值”就是 2(”AB”的长度)。搜索词移动的时候,第一个”AB”向后移动 4 位(字符串长度- 部分匹配值),就可以来到第二个”AB”的位置。
package Algorithm.KMP;
import java.util.Arrays;
/**
* KMP算法
*/
public class KMP {
public static void main(String[] args) {
String str1 = "BBC ABCDAB ABCDABCDABDE";
String str2 = "ABCDABD";
int[] next = getKmpNext(str2);
System.out.println(Arrays.toString(next));
int kmpSearch = kmpSearch(str1, str2, next);
System.out.println(kmpSearch);
}
/**
* KMP算法
* @param str1 源字符串
* @param str2 子串
* @param next 子串匹配表
* @return 返回第一个匹配的位置,反之返回-1
*/
public static int kmpSearch(String str1,String str2, int[] next){
for (int i = 0,j = 0; i < str1.length(); i++) {
//当 dest.charAt(i) != dest.charAt(j) ,我们需要从 next[j-1]获取新的 j
//直到我们发现有dest.charAt(i) == dest.charAt(j)成立才退出
while (j> 0 && str1.charAt(i) != str2.charAt(j)){
j = next[j-1];
}
if (str1.charAt(i) == str2.charAt(j)){
j++;
}
if (j == str2.length()){
return i-j+1;
}
}
return -1;
}
/**
* 获取一个子串的部分匹配值表
* @param dest 子串
* @return 部分匹配值表
*/
public static int[] getKmpNext(String dest){
int[] next = new int[dest.length()];//创建next数组
next[0] = 0;//如果字符串的长度为1,部分匹配值就是0
for (int i = 1, j =0 ; i < dest.length(); i++) {
//当 dest.charAt(i) != dest.charAt(j) ,我们需要从 next[j-1]获取新的 j
//直到我们发现有dest.charAt(i) == dest.charAt(j)成立才退出
while (j> 0 && dest.charAt(i) != dest.charAt(j)){
j = next[j-1];
}
//当 dest.charAt(i) == dest.charAt(j) 满足时,部分匹配值就是+1
if (dest.charAt(i) == dest.charAt(j)){
j++;
}
next[i] = j;
}
return next;
}
}