Java学习——算法——KMP算法

学习尚硅谷韩顺平老师的Java数据结构笔记,详情请移步网站
1、算法介绍
(1) KMP 是一个解决模式串在文本串是否出现过,如果出现过,最早出现的位置的经典算法
(2) Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP 算法”,常用于在一个文本串 S 内查找一个模式串 P 的出现位置,这个算法由 Donald Knuth、Vaughan Pratt、James H. Morris 三人于 1977 年联合发表,故取这 3 人的姓氏命名此算法.
(3) KMP 方法算法就利用之前判断过信息,通过一个 next 数组,保存模式串中前后最长公共子序列的长度,每次回溯时,通过 next 数组找到,前面匹配过的位置,省去了大量的计算时间
2、字符串匹配
字符串匹配问题:
(1) 有一个字符串 str1= “BBC ABCDAB ABCDABCDABDE”,和一个子串 str2=“ABCDABD”
(2) 现在要判断 str1 是否含有 str2, 如果存在,就返回第一次出现的位置, 如果没有,则返回-1
(3) 要求:使用 KMP 算法完成判断,不能使用简单的暴力匹配算法.
思路分析图解:
举例来说,有一个字符串 Str1 = “BBC ABCDAB ABCDABCDABDE”,判断,里面是否包含另一个字符串 Str2 =“ABCDABD”?

  1. 首先,用 Str1 的第一个字符和 Str2 的第一个字符去比较,不符合,关键词向后移动一位
    在这里插入图片描述
  2. 重复第一步,还是不符合,再后移
    在这里插入图片描述
  3. 一直重复,直到 Str1 有一个字符与 Str2 的第一个字符符合为止
    4.
  4. 接着比较字符串和搜索词的下一个字符,还是符合。
    在这里插入图片描述
  5. 遇到 Str1 有一个字符与 Str2 对应的字符不符合。
    在这里插入图片描述
  6. 这时候,想到的是继续遍历 Str1 的下一个字符,重复第 1 步。(其实是很不明智的,因为此时 BCD 已经比较过了, 没有必要再做重复的工作,一个基本事实是,当空格与 D 不匹配时,你其实知道前面六个字符是”ABCDAB”。KMP 算法的想法是,设法利用这个已知信息,不要把”搜索位置”移回已经比较过的位置,继续把它向后移,这样就提高了效率。)
    在这里插入图片描述
  7. 怎么做到把刚刚重复的步骤省略掉?可以对 Str2 计算出一张《部分匹配表》,这张表的产生在后面介绍在这里插入图片描述
  8. 已知空格与 D 不匹配时,前面六个字符”ABCDAB”是匹配的。查表可知,最后一个匹配字符 B 对应的”部分匹配值”为 2,因此按照下面的公式算出向后移动的位数:
    移动位数 = 已匹配的字符数 - 对应的部分匹配值因为 6 - 2 等于 4,所以将搜索词向后移动 4 位。
  9. 因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为 2(”AB”),对应的”部分匹配值” 为 0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移 2 位。
    在这里插入图片描述
  10. 因为空格与 A 不匹配,继续后移一位。
    在这里插入图片描述
  11. 逐位比较,直到发现 C 与 D 不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动 4 位。在这里插入图片描述
  12. 逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配), 移动位数 = 7 - 0,再将搜索词向后移动 7 位,这里就不再重复了。
    在这里插入图片描述
  13. 介绍《部分匹配表》怎么产生的先介绍前缀,后缀是什么
    在这里插入图片描述
    “部分匹配值”就是”前缀”和”后缀”的最长的共有元素的长度。以”ABCDABD”为例,
    -”A”的前缀和后缀都为空集,共有元素的长度为 0;
    -”AB”的前缀为[A],后缀为[B],共有元素的长度为 0;
    -”ABC”的前缀为[A, AB],后缀为[BC, C],共有元素的长度 0;
    -”ABCD”的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为 0;
    -”ABCDA”的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为 1;
    -”ABCDAB”的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为”AB”,
    长度为 2;
    -”ABCDABD”的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD,
    D],共有元素的长度为 0。
    14.”部分匹配”的实质是,有时候,字符串头部和尾部会有重复。比如,”ABCDAB”之中有两个”AB”,那么它的”部分匹配值”就是 2(”AB”的长度)。搜索词移动的时候,第一个”AB”向后移动 4 位(字符串长度- 部分匹配值),就可以来到第二个”AB”的位置。
    在这里插入图片描述
package Algorithm.KMP;

import java.util.Arrays;

/**
 * KMP算法
 */
public class KMP {
    public static void main(String[] args) {
        String str1 = "BBC ABCDAB ABCDABCDABDE";
        String str2 = "ABCDABD";
        int[] next = getKmpNext(str2);
        System.out.println(Arrays.toString(next));

        int kmpSearch = kmpSearch(str1, str2, next);
        System.out.println(kmpSearch);
    }

    /**
     * KMP算法
     * @param str1 源字符串
     * @param str2 子串
     * @param next 子串匹配表
     * @return 返回第一个匹配的位置,反之返回-1
     */
    public static int kmpSearch(String str1,String str2, int[] next){
        for (int i = 0,j = 0; i < str1.length(); i++) {
            //当 dest.charAt(i) != dest.charAt(j) ,我们需要从 next[j-1]获取新的 j
            //直到我们发现有dest.charAt(i) == dest.charAt(j)成立才退出
            while (j> 0 && str1.charAt(i) != str2.charAt(j)){
                j = next[j-1];
            }
            if (str1.charAt(i) == str2.charAt(j)){
                j++;
            }
            if (j == str2.length()){
                return i-j+1;
            }
        }
        return -1;
    }

    /**
     * 获取一个子串的部分匹配值表
     * @param dest 子串
     * @return 部分匹配值表
     */
    public static int[] getKmpNext(String dest){
        int[] next = new int[dest.length()];//创建next数组
        next[0] = 0;//如果字符串的长度为1,部分匹配值就是0
        for (int i = 1, j =0 ; i < dest.length(); i++) {
            //当 dest.charAt(i) != dest.charAt(j) ,我们需要从 next[j-1]获取新的 j
            //直到我们发现有dest.charAt(i) == dest.charAt(j)成立才退出
            while (j> 0 && dest.charAt(i) != dest.charAt(j)){
                j = next[j-1];
            }
            //当 dest.charAt(i) == dest.charAt(j) 满足时,部分匹配值就是+1
            if (dest.charAt(i) == dest.charAt(j)){
                j++;
            }
            next[i] = j;
        }
        return next;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值