kaggle比赛 房屋预测普通版

房价预测案例

Step 1: 检视源数据集

In [5]:
import numpy as np
import pandas as pd
读入数据
  • 一般来说源数据的index那一栏没什么用,我们可以用来作为我们pandas dataframe的index。这样之后要是检索起来也省事儿。

  • 有人的地方就有鄙视链。跟知乎一样。Kaggle的也是个处处呵呵的危险地带。Kaggle上默认把数据放在input文件夹下。所以我们没事儿写个教程什么的,也可以依据这个convention来,显得自己很有逼格。。

In [6]:
train_df = pd.read_csv('../input/train.csv', index_col=0)
test_df = pd.read_csv('../input/test.csv', index_col=0)
检视源数据
In [7]:
train_df.head()
Out[7]:
 MSSubClassMSZoningLotFrontageLotAreaStreetAlleyLotShapeLandContourUtilitiesLotConfig...PoolAreaPoolQCFenceMiscFeatureMiscValMoSoldYrSoldSaleTypeSaleConditionSalePrice
Id                     
160RL65.08450PaveNaNRegLvlAllPubInside...0NaNNaNNaN022008WDNormal208500
220RL80.09600PaveNaNRegLvlAllPubFR2...0NaNNaNNaN052007WDNormal181500
360RL68.011250PaveNaNIR1LvlAllPubInside...0NaNNaNNaN092008WDNormal223500
470RL60.09550PaveNaNIR1LvlAllPubCorner...0NaNNaNNaN022006WDAbnorml140000
560RL84.014260PaveNaNIR1LvlAllPubFR2...0NaNNaNNaN0122008WDNormal250000

5 rows × 80 columns

这时候大概心里可以有数,哪些地方需要人为的处理一下,以做到源数据更加好被process。

Step 2: 合并数据

这么做主要是为了用DF进行数据预处理的时候更加方便。等所有的需要的预处理进行完之后,我们再把他们分隔开。

首先,SalePrice作为我们的训练目标,只会出现在训练集中,不会在测试集中(要不然你测试什么?)。所以,我们先把SalePrice这一列给拿出来,不让它碍事儿。

我们先看一下SalePrice长什么样纸:

In [8]:
%matplotlib inline
prices = pd.DataFrame({"price":train_df["SalePrice"], "log(price + 1)":np.log1p(train_df["SalePrice"])})
prices.hist()
Out[8]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x10864a5f8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x1092429b0>]], dtype=object)

可见,label本身并不平滑。为了我们分类器的学习更加准确,我们会首先把label给“平滑化”(正态化)

这一步大部分同学会miss掉,导致自己的结果总是达不到一定标准。

这里我们使用最有逼格的log1p, 也就是 log(x+1),避免了复值的问题。

记住哟,如果我们这里把数据都给平滑化了,那么最后算结果的时候,要记得把预测到的平滑数据给变回去。

按照“怎么来的怎么去”原则,log1p()就需要expm1(); 同理,log()就需要exp(), ... etc.

In [9]:
y_train = np.log1p(train_df.pop('SalePrice'))

然后我们把剩下的部分合并起来

In [10]:
all_df = pd.concat((train_df, test_df), axis=0)

此刻,我们可以看到all_df就是我们合在一起的DF

In [11]:
all_df.shape
Out[11]:
(2919, 79)

y_train则是SalePrice那一列

In [12]:
y_train.head()
Out[12]:
Id
1    12.247699
2    12.109016
3    12.317171
4    11.849405
5    12.429220
Name: SalePrice, dtype: float64

Step 3: 变量转化

类似『特征工程』。就是把不方便处理或者不unify的数据给统一了。

正确化变量属性

首先,我们注意到,MSSubClass 的值其实应该是一个category,

但是Pandas是不会懂这些事儿的。使用DF的时候,这类数字符号会被默认记成数字。

这种东西就很有误导性,我们需要把它变回成string

In [13]:
all_df['MSSubClass'].dtypes
Out[13]:
dtype('int64')
In [14]:
all_df['MSSubClass'] = all_df['MSSubClass'].astype(str)

变成str以后,做个统计,就很清楚了

In [15]:
all_df['MSSubClass'].value_counts()
Out[15]:
20     1079
60      575
50      287
120     182
30      139
70      128
160     128
80      118
90      109
190      61
85       48
75       23
45       18
180      17
40        6
150       1
Name: MSSubClass, dtype: int64
把category的变量转变成numerical表达形式

当我们用numerical来表达categorical的时候,要注意,数字本身有大小的含义,所以乱用数字会给之后的模型学习带来麻烦。于是我们可以用One-Hot的方法来表达category。

pandas自带的get_dummies方法,可以帮你一键做到One-Hot。

In [16]:
pd.get_dummies(all_df['MSSubClass'], prefix='MSSubClass').head()
Out[16]:
 MSSubClass_120MSSubClass_150MSSubClass_160MSSubClass_180MSSubClass_190MSSubClass_20MSSubClass_30MSSubClass_40MSSubClass_45MSSubClass_50MSSubClass_60MSSubClass_70MSSubClass_75MSSubClass_80MSSubClass_85MSSubClass_90
Id                
10.00.00.00.00.00.00.00.00.00.01.00.00.00.00.00.0
20.00.00.00.00.01.00.00.00.00.00.00.00.00.00.00.0
30.00.00.00.00.00.00.00.00.00.01.00.00.00.00.00.0
40.00.00.00.00.00.00.00.00.00.00.01.00.00.00.00.0
50.00.00.00.00.00.00.00.00.00.01.00.00.00.00.00.0

此刻MSSubClass被我们分成了12个column,每一个代表一个category。是就是1,不是就是0。

同理,我们把所有的category数据,都给One-Hot了

In [17]:
all_dummy_df = pd.get_dummies(all_df)
all_dummy_df.head()
Out[17]:
 LotFrontageLotAreaOverallQualOverallCondYearBuiltYearRemodAddMasVnrAreaBsmtFinSF1BsmtFinSF2BsmtUnfSF...SaleType_ConLwSaleType_NewSaleType_OthSaleType_WDSaleCondition_AbnormlSaleCondition_AdjLandSaleCondition_AllocaSaleCondition_FamilySaleCondition_NormalSaleCondition_Partial
Id                     
165.084507520032003196.0706.00.0150.0...0.00.00.01.00.00.00.00.01.00.0
280.0960068197619760.0978.00.0284.0...0.00.00.01.00.00.00.00.01.00.0
368.0112507520012002162.0486.00.0434.0...0.00.00.01.00.00.00.00.01.00.0
460.0955075191519700.0216.00.0540.0...0.00.00.01.01.00.00.00.00.00.0
584.0142608520002000350.0655.00.0490.0...0.00.00.01.00.00.00.00.01.00.0

5 rows × 303 columns

处理好numerical变量

就算是numerical的变量,也还会有一些小问题。

比如,有一些数据是缺失的:

In [18]:
all_dummy_df.isnull().sum().sort_values(ascending=False).head(10)
Out[18]:
LotFrontage     486
GarageYrBlt     159
MasVnrArea       23
BsmtHalfBath      2
BsmtFullBath      2
BsmtFinSF2        1
GarageCars        1
TotalBsmtSF       1
BsmtUnfSF         1
GarageArea        1
dtype: int64

可以看到,缺失最多的column是LotFrontage

处理这些缺失的信息,得靠好好审题。一般来说,数据集的描述里会写的很清楚,这些缺失都代表着什么。当然,如果实在没有的话,也只能靠自己的『想当然』。。

在这里,我们用平均值来填满这些空缺。

In [19]:
mean_cols = all_dummy_df.mean()
mean_cols.head(10)
Out[19]:
LotFrontage        69.305795
LotArea         10168.114080
OverallQual         6.089072
OverallCond         5.564577
YearBuilt        1971.312778
YearRemodAdd     1984.264474
MasVnrArea        102.201312
BsmtFinSF1        441.423235
BsmtFinSF2         49.582248
BsmtUnfSF         560.772104
dtype: float64
In [20]:
all_dummy_df = all_dummy_df.fillna(mean_cols)

看看是不是没有空缺了?

In [21]:
all_dummy_df.isnull().sum().sum()
Out[21]:
0
标准化numerical数据

这一步并不是必要,但是得看你想要用的分类器是什么。一般来说,regression的分类器都比较傲娇,最好是把源数据给放在一个标准分布内。不要让数据间的差距太大。

这里,我们当然不需要把One-Hot的那些0/1数据给标准化。我们的目标应该是那些本来就是numerical的数据:

先来看看 哪些是numerical的:

In [22]:
numeric_cols = all_df.columns[all_df.dtypes != 'object']
numeric_cols
Out[22]:
Index(['LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt',
       'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF',
       'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea',
       'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
       'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt',
       'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF',
       'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal',
       'MoSold', 'YrSold'],
      dtype='object')

计算标准分布:(X-X')/s

让我们的数据点更平滑,更便于计算。

注意:我们这里也是可以继续使用Log的,我只是给大家展示一下多种“使数据平滑”的办法。

In [23]:
numeric_col_means = all_dummy_df.loc[:, numeric_cols].mean()
numeric_col_std = all_dummy_df.loc[:, numeric_cols].std()
all_dummy_df.loc[:, numeric_cols] = (all_dummy_df.loc[:, numeric_cols] - numeric_col_means) / numeric_col_std

Step 4: 建立模型

把数据集分回 训练/测试集
In [24]:
dummy_train_df = all_dummy_df.loc[train_df.index]
dummy_test_df = all_dummy_df.loc[test_df.index]
In [25]:
dummy_train_df.shape, dummy_test_df.shape
Out[25]:
((1460, 303), (1459, 303))
Ridge Regression

用Ridge Regression模型来跑一遍看看。(对于多因子的数据集,这种模型可以方便的把所有的var都无脑的放进去)

In [26]:
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score

这一步不是很必要,只是把DF转化成Numpy Array,这跟Sklearn更加配

In [27]:
X_train = dummy_train_df.values
X_test = dummy_test_df.values

用Sklearn自带的cross validation方法来测试模型

In [28]:
alphas = np.logspace(-3, 2, 50)
test_scores = []
for alpha in alphas:
    clf = Ridge(alpha)
    test_score = np.sqrt(-cross_val_score(clf, X_train, y_train, cv=10, scoring='neg_mean_squared_error'))
    test_scores.append(np.mean(test_score))

存下所有的CV值,看看哪个alpha值更好(也就是『调参数』)

In [29]:
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(alphas, test_scores)
plt.title("Alpha vs CV Error");

可见,大概alpha=10~20的时候,可以把score达到0.135左右。

Random Forest
In [30]:
from sklearn.ensemble import RandomForestRegressor
In [31]:
max_features = [.1, .3, .5, .7, .9, .99]
test_scores = []
for max_feat in max_features:
    clf = RandomForestRegressor(n_estimators=200, max_features=max_feat)
    test_score = np.sqrt(-cross_val_score(clf, X_train, y_train, cv=5, scoring='neg_mean_squared_error'))
    test_scores.append(np.mean(test_score))
In [32]:
plt.plot(max_features, test_scores)
plt.title("Max Features vs CV Error");

用RF的最优值达到了0.137

Step 5: Ensemble

这里我们用一个Stacking的思维来汲取两种或者多种模型的优点

首先,我们把最好的parameter拿出来,做成我们最终的model

In [33]:
ridge = Ridge(alpha=15)
rf = RandomForestRegressor(n_estimators=500, max_features=.3)
In [34]:
ridge.fit(X_train, y_train)
rf.fit(X_train, y_train)
Out[34]:
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features=0.3, max_leaf_nodes=None, min_impurity_split=1e-07,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=1,
           oob_score=False, random_state=None, verbose=0, warm_start=False)

上面提到了,因为最前面我们给label做了个log(1+x), 于是这里我们需要把predit的值给exp回去,并且减掉那个"1"

所以就是我们的expm1()函数。

In [39]:
y_ridge = np.expm1(ridge.predict(X_test))
y_rf = np.expm1(rf.predict(X_test))

一个正经的Ensemble是把这群model的预测结果作为新的input,再做一次预测。这里我们简单的方法,就是直接『平均化』。

In [40]:
y_final = (y_ridge + y_rf) / 2

Step 6: 提交结果

In [41]:
submission_df = pd.DataFrame(data= {'Id' : test_df.index, 'SalePrice': y_final})

我们的submission大概长这样:

In [42]:
submission_df.head(10)
Out[42]:
 IdSalePrice
01461119595.627405
11462152127.359971
21463174472.484621
31464189936.942219
41465193934.290197
51466175889.222850
61467177835.726832
71468169239.114752
81469184864.220939
91470123773.699896
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值