LeetCode 摘樱桃(动态规划)

这篇博客探讨了LeetCode中的一个樱桃采摘问题,涉及到如何在N x N的网格中,根据特定规则最大化樱桃收获。文章指出,单独考虑从前往后或从后往前的路径会有逻辑漏洞,正确解决方案需要同时考虑两条路径,确保两人在不同位置时都能采摘樱桃。动态规划的状态转移方程被用来描述这一过程,并强调了矩阵中固定步数的重要性。
摘要由CSDN通过智能技术生成

一个N x N的网格(grid) 代表了一块樱桃地,每个格子由以下三种数字的一种来表示:

  1. 0 表示这个格子是空的,所以你可以穿过它。
  2. 1 表示这个格子里装着一个樱桃,你可以摘到樱桃然后穿过它。
  3. -1 表示这个格子里有荆棘,挡着你的路。

你的任务是在遵守下列规则的情况下,尽可能的摘到最多樱桃:

从位置 (0, 0) 出发,最后到达 (N-1, N-1) ,只能向下或向右走,并且只能穿越有效的格子(即只可以穿过值为0或者1的格子);
当到达 (N-1, N-1) 后,你要继续走,直到返回到 (0, 0) ,只能向上或向左走,并且只能穿越有效的格子;
当你经过一个格子且这个格子包含一个樱桃时,你将摘到樱桃并且这个格子会变成空的(值变为0);
如果在 (0, 0) 和 (N-1, N-1) 之间不存在一条可经过的路径,则没有任何一个樱桃能被摘到。

示例 1:

输入: grid =
[[0, 1, -1],
 [1, 0, -1],
 [1, 1,  1]]
输出: 5
解释: 
玩家从(0,0)点出发,经过了向下走,向下走,向右走,向右走,到达了点(2, 2)。
在这趟单程中,总共摘到了4颗樱桃,矩阵变成了[[0,1,-1],[0,0,-1],[0,0,0]]。
接着,这名玩家向左走,向上走,向上走,向左走,返回了起始点,又摘到了1颗樱桃。
在旅程中,总共摘到了5颗樱桃,这是可以摘到的最大值了。

说明:

grid 是一个 N * N 的二维数组,N的取值范围是1 <= N <= 50。
每一个 grid[i][j] 都是集合 {-1, 0, 1}其中的一个数。
可以保证起点 grid[0][0] 和终点 grid[N-1][N-1] 的值都不会是 -1。

思路分析: 首先我们知道一条路径从前往后走和从后往前走获取的樱桃数是相同的,所以正反走可以看做为两次正走。
刚开始吧,可能大家都会想着把两次路径分开,先走一次获取最大,然后把走过摘取了的樱桃去掉,在走一次获取当前最大的樱桃,最后返回两个结果的和。这样看似没有问题,其实逻辑是存在漏洞的,因为第一次走过的路径会影响第二次的路径。比如:
绿色为第一次走过的获取最大樱桃数路径13,蓝色为第一次获取最大后可获取的最大樱桃数1,总共14.
在这里插入图片描述
然而这个矩阵的解为15
在这里插入图片描述
所以我们不能分开求解,需要用两个人同时在矩阵中行走。如果两个人在同一个位置,则这个位置也只能采摘一次,否则两个人所处的位置都能进行樱桃采摘。
由于矩阵的大小是固定的,所以从左上角到右下角在题中的行走规则需要的总步数也是固定的,为gridSize * 2 - 1。
在第step步,假设第一个人在(oneRow, oneCol),第二个人走到(twoRow, twoCol),那么一定有oneRow + oneCol == step,twoRow + twoCol == step.
如果oneRow == twoRow,两个人所处的位置相同,否则两个人所处的位置不相同。位置相同时,这个位置只能采摘一次,位置不同两个人所处的位置都进行采摘。

状态转移方程:

dp[oneRow][towRow] = grid[oneRow][oneCol] + grid[towRow][twoCol] + max(dp[oneRow - 1][towRow], dp[oneRow][towRow - 1], dp[oneRow - 1][towRow - 1])
class Solution {
   
public:
    int cherryPickup(vector<vector<int>>& grid) {
   
        int gridSize = grid.size()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值