线段树+分治
小C的数学问题
Time limit:1000ms Memory limit:128 MB
Problem Description
小C是个云南中医学院的大一新生,在某个星期二,他的高数老师扔给了他一个问题。
让他在1天的时间内给出答案。
但是小C不会这问题,现在他来请教你。
请你帮他解决这个问题。
有n个数,每个数有权值。
数学老师定义了区间价值为区间和乘上区间内的最小值。
现在要你找出有最大区间价值的区间是什么,并输出区间价值。
Input
每个输入文件只包含单组数据。
第一行一个整数n。(1 <= n <= 100000)
第二行n个整数a1,a2,...,an。(0<=ai<=1000000)第二行n个整数a1,a2,...,an。(0<=ai<=1000000)
Output
第一行输出一个整数,表示最大的区间价值。
第二行输出两个整数,表示区间的起点和终点。
保证答案唯一。
Sample Input
6
10 1 9 4 5 9
1
2
Sample Output
108
3 6
1
2
解题思路:
线段树维护每个区间的最小值,加个查询区间最小值函数返回pos,分治pos为中心二分就可以了。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <bitset>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <algorithm>
using namespace std;
#define mem(a,b) memset(a,(b),sizeof(a))
#define CL(a, b) memset(a, b, sizeof(a))
#define debug(x) cout<<"debug"<<x<<"\n"
#define sc scanf
#define pr printf
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll long long
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
const int N = 100000+10;
ll a[N];
ll sum[N];
int st = 1,ed = 1;
ll ans = 0;
ll kkk = 0;
struct node
{
int l,r,w;
ll Min;
}tree[4*N+1];
///建树
pair<int,ll> build(int l,int r,int k)
{
tree[k].l=l;tree[k].r=r;
if(l==r)//叶子节点
{
tree[k].w = l;
tree[k].Min = a[l];
return make_pair(l,a[l]);
}
int m=(l+r)/2;
pair<int,ll> r1 = build(l,m,k*2);//左孩子
pair<int,ll> r2 = build(m+1,r,k*2+1);//右孩子
if(r1.second<r2.second)
{
tree[k].w = r1.first;
tree[k].Min = r1.second;
return r1;
}
else
{
tree[k].w = r2.first;
tree[k].Min = r2.second;
return r2;
}
}
///区间求和(在节点k的[l,r]内查询[x,y]的区间和);
int Ans1 = 0;
pair<int,ll> querymin(int k,int x,int y)
{
if(x == tree[k].l && y==tree[k].r)
{
return make_pair(tree[k].w,tree[k].Min);
}
int m=(tree[k].l+tree[k].r)/2;
if(y<=m)
{
return querymin(k*2,x,y);
}
else if(x>m)
{
return querymin(k*2+1,x,y);
}
else{
pair<int,ll> r1=querymin(k*2,x,m);
pair<int,ll> r2 = querymin(k*2+1,m+1,y);
if(r1.second<r2.second)
{
return r1;
}
else
{
return r2;
}
}
}
ll f(int l,int r)
{
if(l>r)
{
return 0;
}
if(l == r)
{
return a[l]*a[r];
}
pair<int,ll> p = querymin(1,l,r);
int pos = p.first;
ll m = p.second;
ll res = (sum[r]-sum[l-1])*m;
if(res>ans)
{
ans = res;
st = l,ed = r;
}
// printf("%lld\n",res);
return max(res,max(f(l,pos-1),f(pos+1,r)));
}
int main()
{
int n,q;
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
scanf("%lld",&a[i]);
sum[i] = sum[i-1]+a[i];
}
build(1,n,1);
printf("%lld\n",f(1,n));
// debug(1);
printf("%d %d\n",st,ed);
return 0;
}