【机器学习】回归误差:MSE、RMSE、MAE、R2、Adjusted R2 +方差、协方差、标准差(标准偏差/均方差)、均方误差、均方根误差(标准误差)、均方根解释

回归分析中常用的误差评估指标包括MSE(均方误差)、RMSE(均方根误差)、MAE(平均绝对误差)和R2(决定系数)。MSE和RMSE衡量预测值与真实值的差距,MAE关注绝对误差,R2则表示模型解释数据变异性的比例。此外,还介绍了方差、协方差、标准差的概念及其在统计学中的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们通常采用MSE、RMSE、MAE、R2来评价回归预测算法。

1、均方误差:MSE(Mean Squared Error)

其中,为测试集上真实值-预测值。

def rms(y_test, y):
return sp.mean((y_test - y) ** 2)

 

2、均方根误差:RMSE(Root Mean Squard Error)

可以看出,RMSE=sqrt(MSE)。

3、平均绝对误差:MAE(Mean Absolute Error)

以上各指标,根据不同业务,会有不同的值大小,不具有可读性,因此还可以使用以下方式进行评测。

4、决定系数:R2(R-Square)

def R2(y_test, y_true):
return 1 - ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()

 

其中,分子部分表示真实值与预测值的平方差之和,类似于均方差 MSE;分母部分表示真实值与均值的平方差之和,类似于方差 Var。

根据 R-Squared 的取值,来判断模型的好坏,其取值范围为[0,1]:

如果结果是 0,说明模型拟合效果很差;

如果结果是 1,说明模型无错误。

一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量。

5、校正决定系数(Adjusted R-Square)

其中,n 是样本数量,p 是特征数量。

Adjusted R-Square 抵消样本数量对 R-Square的影响,做到了真正的 0~1,越大越好。

python中可以直接调用

from sklearn.metrics import mean_squared_error #均方误差

from sklearn.metrics import mean_absolute_error #平方绝对误差

from sklearn.metrics import r2_score#R square

#调
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网络毒刘

授人玫瑰,手有余香。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值