导入需要的包
import pandas as pd
import numpy as np
from pandas import DataFrame,Series
from sklearn.cluster import KMeans
from sklearn.cluster import Birch
设置文件导入导出位置
datafile = u'E:\\grade3作业\\多元实践\\newjiudiandata1.csv'#文件所在位置,u为防止路径中有中文名称,此处没有,可以省略
outfile = u'E:\\grade3作业\\多元实践\\julei_out.csv'#设置输出文件的位置
data = pd.read_csv(datafile)#datafile是excel文件,所以用read_excel,如果是csv文件则用read_csv
d = DataFrame(data)
进行样本分类
mod = KMeans(n_clusters=3, n_jobs = 4, max_iter = 500)#聚成4类数据,并发数为4,最大循环次数为500
mod.fit_predict(d)#y_pred表示聚类的结果
#聚成4类数据,统计每个聚类下的数据量,并且求出他们的中心
r1 = pd.Series(mod.labels_).value_counts()
r2 = pd.DataFrame(mod.cluster_centers_)
r = pd.concat([r2, r1], axis = 1)
r.columns = list(d.columns) + [u'类别数目']
#给每一条数据标注上被分为哪一类
r =