python 样本聚类

本文详细介绍使用KMeans算法进行数据聚类的过程,包括数据预处理、模型训练、结果分析及可视化展示。通过实例演示了如何利用Python的Pandas、NumPy和Scikit-learn库完成聚类任务。
摘要由CSDN通过智能技术生成

导入需要的包

import pandas as pd
import numpy as np
from pandas import DataFrame,Series
from sklearn.cluster import KMeans
from sklearn.cluster import Birch

设置文件导入导出位置

datafile = u'E:\\grade3作业\\多元实践\\newjiudiandata1.csv'#文件所在位置,u为防止路径中有中文名称,此处没有,可以省略
outfile = u'E:\\grade3作业\\多元实践\\julei_out.csv'#设置输出文件的位置
data = pd.read_csv(datafile)#datafile是excel文件,所以用read_excel,如果是csv文件则用read_csv
d = DataFrame(data)

进行样本分类

mod = KMeans(n_clusters=3, n_jobs = 4, max_iter = 500)#聚成4类数据,并发数为4,最大循环次数为500
mod.fit_predict(d)#y_pred表示聚类的结果
#聚成4类数据,统计每个聚类下的数据量,并且求出他们的中心
r1 = pd.Series(mod.labels_).value_counts()
r2 = pd.DataFrame(mod.cluster_centers_)
r = pd.concat([r2, r1], axis = 1)
r.columns = list(d.columns) + [u'类别数目']
#给每一条数据标注上被分为哪一类
r =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值