java集合复习总结(Hash扩容机制,集合遍历排序降序升序,匿名类的使用结合Comparator)

 

目录

List、Set、Map基本特点:

ArrayList和LinkedList最主要的区别:

关于默认初始容量:

集合遍历的三种方式:

--集合排序:

关于HashMap扩容机制:


List、Set、Map基本特点:

List:存放重复,有顺序的数据

Set:存放不可重复、无序的数据

HashSet:底层是哈希表,无序不可重复

TreeSet:底层是二叉树,不可重复,有序(对于实现了Comparable的类(如8种大基本类型))

List、Set继承Collection(单列集合),Map不是。

 

Map<Key,Value>:双列型集合,存放的是一对键值,Key 不可以重复,Value可以且数据无序

HashMap底层是哈希表(没有下标),无序,key不可以重复

TreeMap底层是二叉树,有序(对于实现了Comparable的类(如8种大基本类型),可以根据key进行排序。

 

ArrayList和LinkedList最主要的区别:

底层实现不同,arrayList采用的是数组(方便查询),LinkedList采用的是链表(方便增删);

 

关于默认初始容量:

arrayList 的默认构造容量是10,超过10,扩大两倍+1;

HashSet是:16 负载因子:0.75 即达到12就进行扩展,扩充倍数为两倍。

HashMap :16 负载因子:0.75 即达到12就进行扩展,扩充倍数为两倍。

Hashtable 初始容量是11 ,扩容 方式为2N+1;

集合遍历的三种方式:

List list;

for(int i =0;i<list.size();i++){}

for(Object o :list){}

只适用于集合,不能在数组中使用: list.foreach(temp->{});  

HashMap: hm.foreach((k,v)->{System.out.println(k+"="+v)}); 直接打印hashmap对象是打印哈希值,但是hashmap底层实现了toString。则打印toString内容。

--集合排序:

Comparable与Comparable的区别:https://www.cnblogs.com/skywang12345/p/3324788.html

1)升序:直接使用Collections.sort(ls);

2)降序或者对特定字段: Collections.reverse(ls);//这是翻转不是倒序,

Collections.sort(ls,Collections.reverseOrder());     ---关于数组排序函数:Arrays.sort(array);Arrays.sort(array,Collections.reverseOrder()) 注意这个地方的array不能是int[] 必须要对象类型 Integer[]
public static void main(String[] args) throws Exception {
 List<Integer> ls = new ArrayList();
 ls.add(89);
 ls.add(66);
 ls.add(22);
 ls.add(41);
 ls.add(99);
 ls.sort(new CompareInt());
 ls.forEach(temp->{
     System.out.println(temp);
 });
}
class CompareInt implements Comparator<Integer>{
    @Override
    public int compare(Integer o1,Integer o2) {
        return o2 -o1;
    }
}

 

 public static void main(String[] args) throws Exception {
  List<Integer> ls = new ArrayList();
  ls.add(89);
  ls.add(66);
  ls.add(22);
  ls.add(41);
  ls.add(99);
Collections.sort(ls, new Comparator<Integer>() {
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2-o1;
    }
});
  ls.forEach(temp->{
      System.out.println(temp);
  });
 }

 

 

关于HashMap扩容机制:

 

总结:

HashMap默认加载因子为什么选择0.75?(阿里) - aspirant - 博客园 (cnblogs.com)

提高空间利用率和减少查询成本的折中(空间利用率和查询效率的平衡)

由泊松分布得出加载因子在0.6~0.8范围比较好 (0.75*2n刚好为整数)

加载因子过高,例如为1,虽然减少了空间开销,提高了空间利用率,但是导致碰撞可能增加,也就增加了查询时间成本;

加载因子过低,例如0.5,虽然可以减少查询时间成本,但是空间利用率很低,同时提高了resize操作的次数。(这个操作十分消耗性能即资源)(加载因子低影响空间和性能资源)

 

resize:最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize

扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知hashmap中元素的个数,那么预设元素的个数能够有效的提高hashmap的性能。比如说,我们有1000个元素new HashMap(1000), 但是理论上来讲new HashMap(1024)更合适,不过上面annegu已经说过,即使是1000,hashmap也自动会将其设置为1024。 但是new HashMap(1024)还不是更合适的,因为0.75*1000 < 1000, 也就是说为了让0.75 * size > 1000, 我们必须这样new HashMap(2048)才最合适,既考虑了&的问题,也避免了resize的问题。 

1)结构:(可以说是散列表)

2)数组长度为什么是16(或者是2的幂次方):

hash算法:

  1. static int indexFor(int h, int length) {  
  2.        return h & (length-1);  
  3.    }  

为什么用与呢?
所以我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,能不能找一种更快速,消耗更小的方式那?java中时这样做的,

位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快。


         看上图,左边两组是数组长度为16(2的4次方),右边两组是数组长度为15。两组的hashcode均为8和9,但是很明显,当它们和1110“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到同一个链表上,那么查询的时候就需要遍历这个链表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hashcode的值会与14(1110)进行“与”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率! 

    数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。 

转至:https://www.cnblogs.com/williamjie/p/9358291.html

相关推荐
<p> <span style="font-size:14px;color:#E53333;">限时福利1:</span><span style="font-size:14px;">购课进答疑群专享柳峰刘运强老师答疑服务</span> </p> <p> <br /> </p> <p> <br /> </p> <p> <span style="font-size:14px;"></span> </p> <p> <span style="font-size:14px;color:#337FE5;"><strong>为什么需要掌握高性能MySQL实战?</strong></span> </p> <p> <span><span style="font-size:14px;"><br /> </span></span> <span style="font-size:14px;">由于互联网产品用户量大、高并发请求场景多因此对MySQL性能、可用性、扩展性都提出了很高要求。使用MySQL解决大量数据以及高并发请求已经是程序员必备技能也是衡量一个程序员能力和薪资标准之一。</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">为了让大家快速系统了解高性能MySQL核心知识全貌我为你总结了</span><span style="font-size:14px;">「高性能 MySQL 知识框架图」</span><span style="font-size:14px;">,帮你梳理学习重点建议收藏!</span> </p> <p> <br /> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006031401338860.png" /> </p> <p> <br /> </p> <p> <span style="font-size:14px;color:#337FE5;"><strong>【课程设计】</strong></span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">课程分为四大篇章将为你建立完整 MySQL 知识体系同时将重点讲解 MySQL 底层运行原理、数据库性能调优、高并发、海量业务处理、面试解析等。</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;"></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>一、性能优化篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括经典 MySQL 问题剖析、索引底层原理和事务与锁机制。通过深入理解 MySQL 索引结构 B+Tree 学员能够从根本上弄懂为什么有些 SQL 走索引、有些不走索引从而彻底掌握索引使用和优化技巧能够避开很多实战中遇到“坑”。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>二、MySQL 8.0新特性篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括窗口函数和通用表表达式。企业中许多报表统计需求如果不采用窗口函数用普通 SQL 语句是很难实现。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>三、高性能架构篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括主从复制和读写分离。在企业生产环境中很少采用单台MySQL节点情况因为一旦单个节点发生故障整个系统都不可用后果往往不堪设想因此掌握高可用架构实现是非常有必要。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>四、面试篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">程序员获得工作第一步就是高效准备面试面试篇主要从知识点回顾总结角度出发结合程序员面试高频MySQL问题精讲精练帮助程序员吊打面试官获得心仪工作机会。</span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页