基于opencv的selenium滑动验证码

基于selenium进行动作链

由于最近很多人聊到滑动验证码怎么处理,所以决定自己动手试一下。
做一个东西前。我们首先要对这个东西的操作过程有一个大概的了解。

  1. 打开验证码页面。
  2. 鼠标放到拖动按钮上
  3. 对拖动按钮进行拖动
  4. 拖动到阴影快重合的位置。
  5. 放开拖动按钮。
from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains

artice = browser.find_element_by_class_name('geetest_slider_button') # 滑动按钮
action = ActionChains(browser)
action.click_and_hold(artice).perform()  #按住按钮不放
action.reset_actions()  
action.pause(0.01).move_by_offset(step, 0).perform() #step 为滑动的水平距离
action.release(artice).perform() # 松开按钮

上面就是本方用到的有关于ActionChains的方法。其他方法这里不过多介绍,想了解更多的请转 seleniun ActionChains 鼠标键盘操作

接下来到我本次要介绍的重点,滑动距离的介绍,也就是图片求阴影区域的位置。

这里我使用了opencv库,主要流程包括

  1. 对图像二值化
  2. 对二值化的图像进行高斯模糊
  3. 用canny进行边缘检测
  4. 然后HoughLinesP霍夫变换寻找直线
  5. 对符合条件的直线进行处理寻找交点,进而求出我们要找的阴影快的距离

import cv2 as cv
import numpy as np
import math

# 寻找直线
def FindLines(image):
    image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)  # 灰度化
    blurred = cv.GaussianBlur(image, (5, 5), 0)  # 高斯模糊
    canny = cv.Canny(blurred, 200, 400)  # canny边缘检测
    lines = cv.HoughLinesP(canny, 1, np.pi / 180, 20, minLineLength=15, maxLineGap=8)  # 霍夫变换寻找直线
    return lines[:, 0, :]  # 返回直线


# 这里对直线进行过滤
def FindResultLises(lines):
    resultLines = []
    for x1, y1, x2, y2 in lines:
        if (abs(y2 - y1) < 5 or abs(x2 - x1) < 5) and min(x1, x2) > 60:  # 只要垂直于坐标轴的直线并且起始位置在60像素以上
            resultLines.append([x1, y1, x2, y2])
    return resultLines


# 判断点是否在直线上
def distAbs(point_exm, list_exm):
    x, y = point_exm
    x1, y1, x2, y2 = list_exm
    dist_1 = math.sqrt(abs((y2 - y1) + (x2 - x1) + 1))  # 直线的长度
    dist_2 = math.sqrt(abs((y1 - y) + (x1 - x) + 1)) + math.sqrt(abs((y2 - y) + (x2 - x) + 1))  # 点到两直线两端点距离和
    return abs(dist_2 - dist_1)  


# 交点函数 y = kx + b 求交点位置
def findPoint(line1, line2):
    poit_status = False
    x1, y1, x2, y2 = line1
    x3, y3, x4, y4 = line2
    x = y = 0

    if (x2 - x1) == 0: # 垂直x轴
        k1 = None
        b1 = 0
    else:
        k1 = 1.0 * (y2 - y1) / (x2 - x1)
        b1 = y1 * 1.0 - k1 * x1 * 1.0

    if (x4 - x3) == 0:
        k2 = None
        b2 = 0
    else:
        k2 = 1.0 * (y4 - y3) / (x4 - x3)
        b2 = y3 * 1.0 - k2 * x3 * 1.0

    if k1 is None:
        if not k2 is None:
            x = x1
            y = k2 * x1 + b2
            poit_status = True
    elif k2 is None:
        x = x3
        y = k1 * x3 + b1
        poit_status = True
    elif k1 != k2:
        x = (b2 - b1) * 1.0 / (k1 - k2)
        y = k1 * x * 1.0 + b1 * 1.0
        poit_status = True

    return poit_status, [x, y]


# 求交点
def linePoint(resultLines):
    for x1, y1, x2, y2 in resultLines:
        for x3, y3, x4, y4 in resultLines:
            point_is_exist, [x, y] = findPoint([x1, y1, x2, y2], [x3, y3, x4, y4])   # 两线是否有交点
            if point_is_exist:
                dist_len1 = distAbs([x, y], [x1, y1, x2, y2])
                dist_len2 = distAbs([x, y], [x3, y3, x4, y4])
                if dist_len1 < 5 and dist_len2 < 5:  # 如果误差在5内我们认为点在直线上
                    # 判断交点在行直线中是左端点还是右端点
                    if abs(y2 - y1) < 5:
                        # x1是行直线
                        if abs(x1 - x) + abs(y1 - y) < 5:  # 左端点
                            return -1, [x, y]
                        else:
                            return 1, [x, y]
                    else:
                        # x2是行直线
                        if abs(x3 - x) + abs(y3 - y) < 5:
                            return -1, [x, y]
                        else:
                            return 1, [x, y]
    return 0, [0, 0]

if __name__ == '__main__':
    img = cv.imread(r'C:\Users\Administrator\Desktop\opencv\temImg.png')
    lines = FindLines(img)
    lines = FindResultLises(lines)
    L_or_R, point_x = linePoint(lines)   # L_or_R 用于判断交点在行直线左边还是右边  后面拖动要用到
    xoffset = point_x[0]
    yoffset = point_x[1]
    cv.circle(img, (int(xoffset), int(yoffset)), 5, (0, 0, 255), 3)
    cv.imshow('circle', img)
    cv.waitKey(0)
    cv.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述
效果图
当然也有操作不到的图片,各位有兴趣的可以尝试并且修改其中的参数

滑动验证码

在上面我们已经找到了边缘点,并且根据交点是在左边还是右边进行计算,找到我们要滑动的最后值

if L_or_R == 1:
    x_offset = xoffset - 20  # 20是阴影快一半的长度  可根据实际情况调整
else:
    x_offset = offset + 20

有了滑动距离,接下来就应该是滑动了
如果我们直接用 action.move_by_offset(x_offset,0).perform() 图片会图示被怪物吃了。那就是运动轨迹被检测到不是正常人的行为,因为正常人很难一拉就拉到对应的位置。

滑动轨迹算法

所以我们还要有一个模拟人的正常操作的拖动轨迹:下面是以先加速再减速的轨迹

import ramdom

# 通过加速减速模拟滑动轨迹
def moveTrack(xoffset):
    updistance = xoffset*4/5
    t = 0.2
    v = 0
    steps_list = []
    current_offset = 0
    while current_offset<xoffset:
        if current_offset<updistance:
            a = 2 + random.random() * 2
        else:
            a = -random.uniform(12,13)
        vo = v
        v = vo + a * t
        x = vo * t + 1 / 2 * a * (t * t)
        x = round(x, 2)
        current_offset += abs(x)
        steps_list.append(abs(x))
    # 上面的 sum(steps_list) 会比实际的大一点,所以再模拟一个往回拉的动作,补平多出来的距离
    disparty = sum(steps_list)-xoffset 
    last1 = round(-random.random() - disparty, 2)
    last2 = round(-disparty-last1, 2)
    steps_list.append(last1)
    steps_list.append(last2)
    
    return steps_list

有了轨迹 steps_list 我们就可以通过循环来拖动按钮。需要注意的一点是 每一次循环都要action.reset_actions() 不然他会把之前的距离也算进来,循环结束记得松开按钮

for step in steps_list:
    action.reset_actions()
    action.pause(0.01).move_by_offset(step, 0).perform()
action.release(artice).perform()

本篇结束
转载说明出处,有问题可留言,谢谢

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值