selenium之 玩转鼠标键盘操作(ActionChains)

本文详细介绍如何使用Selenium中的ActionChains类模拟鼠标操作,包括单击、双击、右击、拖拽等,并通过具体示例展示了每种操作的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更多关于python selenium的文章,请关注我的专栏:Python Selenium自动化测试详解


用selenium做自动化,有时候会遇到需要模拟鼠标操作才能进行的情况,比如单击、双击、点击鼠标右键、拖拽等等。而selenium给我们提供了一个类来处理这类事件——ActionChains

selenium.webdriver.common.action_chains.ActionChains(driver)

这个类基本能够满足我们所有对鼠标操作的需求。

1.ActionChains基本用法

首先需要了解ActionChains的执行原理,当你调用ActionChains的方法时,不会立即执行,而是会将所有的操作按顺序存放在一个队列里,当你调用perform()方法时,队列中的时间会依次执行。

这种情况下我们可以有两种调用方法:

  • 链式写法

    menu = driver.find_element_by_css_selector(".nav")
    hidden_submenu =    driver.find_element_by_css_selector(".nav #submenu1")
    
    ActionChains(driver).move_to_element(menu).click(hidden_submenu).perform()
  • 分步写法

    menu = driver.find_element_by_css_selector(".nav")
    hidden_submenu = driver.find_element_by_css_selector(".nav #submenu1")
    
    actions = ActionChains(driver)
    actions.move_to_element(menu)
    actions.click(hidden_submenu)
    actions.perform()

两种写法本质是一样的,ActionChains都会按照顺序执行所有的操作。

2.ActionChains方法列表

click(on_element=None) ——单击鼠标左键

click_and_hold(on_element=None) ——点击鼠标左键,不松开

context_click(on_element=None) ——点击鼠标右键

double_click(on_element=None) ——双击鼠标左键

drag_and_drop(source, target) ——拖拽到某个元素然后松开

drag_and_drop_by_offset(source, xoffset, yoffset) ——拖拽到某个坐标然后松开

key_down(value, element=None) ——按下某个键盘上的键

key_up(value, element=None) ——松开某个键

move_by_offset(xoffset, yoffset) ——鼠标从当前位置移动到某个坐标

move_to_element(to_element) ——鼠标移动到某个元素

move_to_element_with_offset(to_element, xoffset, yoffset) ——移动到距某个元素(左上角坐标)多少距离的位置

perform() ——执行链中的所有动作

release(on_element=None) ——在某个元素位置松开鼠标左键

send_keys(*keys_to_send) ——发送某个键到当前焦点的元素

send_keys_to_element(element, *keys_to_send) ——发送某个键到指定元素

接下来用示例来详细说明和演示每一个方法的用法:

3.代码示例

1. 点击操作

示例网址http://sahitest.com/demo/clicks.htm

代码:

# -*- coding: utf-8 -*-

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
from time import sleep


driver = webdriver.Firefox()
driver.implicitly_wait(10)
driver.maximize_window()
driver.get('http://sahitest.com/demo/clicks.htm')

click_btn = driver.find_element_by_xpath('//input[@value="click me"]')  # 单击按钮
doubleclick_btn = driver.find_element_by_xpath('//input[@value="dbl click me"]')  # 双击按钮
rightclick_btn = driver.find_element_by_xpath('//input[@value="right click me"]')  # 右键单击按钮


ActionChains(driver).click(click_btn).double_click(doubleclick_btn).context_click(rightclick_btn).perform()  # 链式用法

print driver.find_element_by_name('t2').get_attribute('value')

sleep(2)
driver.quit()

结果:

[CLICK][DOUBLE_CLICK][RIGHT_CLICK]

2.鼠标移动

示例网址http://sahitest.com/demo/mouseover.htm

示例代码:

# -*- coding: utf-8 -*-

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
from time import sleep

driver = webdriver.Firefox()
driver.implicitly_wait(10)
driver.maximize_window()
driver.get('http://sahitest.com/demo/mouseover.htm')

write = driver.find_element_by_xpath('//input[@value="Write on hover"]')  # 鼠标移动到此元素,在下面的input框中会显示“Mouse moved”
blank = driver.find_element_by_xpath('//input[@value="Blank on hover"]')  # 鼠标移动到此元素,会清空下面input框中的内容

result = driver.find_element_by_name('t1')

action = ActionChains(driver)
action.move_to_element(write).perform()  # 移动到write,显示“Mouse moved”
print result.get_attribute('value')

# action.move_to_element(blank).perform()
action.move_by_offset(10, 50).perform()  # 移动到距离当前位置(10,50)的点,与上句效果相同,移动到blank上,清空
print result.get_attribute('value')

action.move_to_element_with_offset(blank, 10, -40).perform()  # 移动到距离blank元素(10,-40)的点,可移动到write上
print result.get_attribute('value')

sleep(2)
driver.quit()

结果

Mouse moved

Mouse moved

一般很少用位置关系来移动鼠标,如果需要,可参考下面的链接来测量元素位置

http://jingyan.baidu.com/article/eb9f7b6d87e2ae869264e847.html

3.拖拽

示例网址http://sahitest.com/demo/dragDropMooTools.htm

代码:

# -*- coding: utf-8 -*-

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
from time import sleep

driver = webdriver.Firefox()
driver.implicitly_wait(10)
driver.maximize_window()
driver.get('http://sahitest.com/demo/dragDropMooTools.htm')

dragger = driver.find_element_by_id('dragger')  # 被拖拽元素
item1 = driver.find_element_by_xpath('//div[text()="Item 1"]')  # 目标元素1
item2 = driver.find_element_by_xpath('//div[text()="Item 2"]')  # 目标2
item3 = driver.find_element_by_xpath('//div[text()="Item 3"]')  # 目标3
item4 = driver.find_element_by_xpath('//div[text()="Item 4"]')  # 目标4

action = ActionChains(driver)
action.drag_and_drop(dragger, item1).perform()  # 1.移动dragger到目标1
sleep(2)
action.click_and_hold(dragger).release(item2).perform()  # 2.效果与上句相同,也能起到移动效果
sleep(2)
action.click_and_hold(dragger).move_to_element(item3).release().perform()  # 3.效果与上两句相同,也能起到移动的效果
sleep(2)
# action.drag_and_drop_by_offset(dragger, 400, 150).perform()  # 4.移动到指定坐标
action.click_and_hold(dragger).move_by_offset(400, 150).release().perform()  # 5.与上一句相同,移动到指定坐标
sleep(2)
driver.quit()

结果:

dropped dropped dropped dropped

一般用坐标定位很少,用上例中的方法1足够了,如果看源码,会发现方法2其实就是方法1中的drag_and_drop()的实现。注意:拖拽使用时注意加等待时间,有时会因为速度太快而失败。

4.按键

模拟按键有多种方法,能用win32api来实现,能用SendKeys来实现,也可以用selenium的WebElement对象的send_keys()方法来实现,这里ActionChains类也提供了几个模拟按键的方法。

示例网址http://sahitest.com/demo/keypress.htm

代码1:

# -*- coding: utf-8 -*-

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
from time import sleep

driver = webdriver.Firefox()
driver.implicitly_wait(10)
driver.maximize_window()
driver.get('http://sahitest.com/demo/keypress.htm')

key_up_radio = driver.find_element_by_id('r1')  # 监测按键升起
key_down_radio = driver.find_element_by_id('r2')  # 监测按键按下
key_press_radio = driver.find_element_by_id('r3')  # 监测按键按下升起

enter = driver.find_elements_by_xpath('//form[@name="f1"]/input')[1]  # 输入框
result = driver.find_elements_by_xpath('//form[@name="f1"]/input')[0]  # 监测结果

# 监测key_down
key_down_radio.click()
ActionChains(driver).key_down(Keys.CONTROL, enter).key_up(Keys.CONTROL).perform()
print result.get_attribute('value')

# 监测key_up
key_up_radio.click()
enter.click()
ActionChains(driver).key_down(Keys.SHIFT).key_up(Keys.SHIFT).perform()
print result.get_attribute('value')

# 监测key_press
key_press_radio.click()
enter.click()
ActionChains(driver).send_keys('a').perform()
print result.get_attribute('value')
driver.quit()

结果:

key downed charCode=[0] keyCode=[17] CTRL
key upped charCode=[0] keyCode=[16] NONE
key pressed charCode=[97] keyCode=[0] NONE

示例2:

示例网址http://sahitest.com/demo/label.htm

代码:

# -*- coding: utf-8 -*-

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.keys import Keys
from time import sleep

driver = webdriver.Firefox()
driver.implicitly_wait(10)
driver.maximize_window()

driver.get('http://sahitest.com/demo/label.htm')

input1 = driver.find_elements_by_tag_name('input')[3]
input2 = driver.find_elements_by_tag_name('input')[4]

action = ActionChains(driver)
input1.click()
action.send_keys('Test Keys').perform()
action.key_down(Keys.CONTROL).send_keys('a').key_up(Keys.CONTROL).perform()  # ctrl+a
action.key_down(Keys.CONTROL).send_keys('c').key_up(Keys.CONTROL).perform()  # ctrl+c

action.key_down(Keys.CONTROL, input2).send_keys('v').key_up(Keys.CONTROL).perform()  # ctrl+v

print input1.get_attribute('value')
print input2.get_attribute('value')

driver.quit()

结果:

Test Keys
Test Keys

复制粘贴用WebElement< input >.send_keys()也能实现,大家可以试一下,也可以用更底层的方法,同时也是os弹框的处理办法之一的win32api,有兴趣也可以试试SendKeys、keybd_event

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值