论文笔记013:[CVPR2019]CityFlow: A City-Scale Benchmark for Multi-Target Multi-Camera Vehicle Tracking an

在这里插入图片描述
机器之心详解


摘要

城市交通优化使用交通摄像头作为传感器,推动了先进的多目标多摄像头(MTMC)跟踪的需求。背景
这项工作引入了CityFlow,这是一个城市规模的交通摄像头数据集,包含超过3小时的同步高清视频,来自10个路口的40个摄像头,同时两个摄像头之间的最长距离为2.5公里。据我们所知,CityFlow是城市环境中最大的空间覆盖和摄像头/视频数量的数据集。该数据集包含超过200K的带注释的边界框,涵盖了广泛的场景、视角、车辆模型和城市交通流状况。摄像机的几何形状和校准信息被提供来辅助时空分析。此外,该基准的一个子集可用于基于图像的车辆再识别(ReID)任务。
在这个数据集上,我们对基线/最先进的方法进行了广泛的实验评估,包括MTMC跟踪、多目标单摄像头(MTSC)跟踪、目标检测和基于图像的ReID,分析了不同网络架构、损失函数、任务效率的时空模型及其组合。
在2019年人工智能城市挑战赛(AI City Challenge)上,我们推出了一个evaluation server,让研究人员可以比较他们最新技术的性能。我们希望这个数据集能够催化该领域的研究,推动最先进的技术向前发展,并导致在现实世界中部署交通优化。


数据集

1.有5个场景:说明该数据集覆盖范围广,city-scale
在这里插入图片描述
2.各数据集比较,这个表还挺详细的
在这里插入图片描述
3.关于这个数据集的详细介绍:分别在5个场景下的详细信息
在这里插入图片描述
4.这个图似曾相识,veri-wild的数据集也有一个color和type的分析
在这里插入图片描述
5.可视化的图:展示车子在不同摄像头下的样子
在这里插入图片描述
在这里插入图片描述


实验

其实觉得实验主要就是看图表,超级丰富的,还是有挺多借鉴的地方

1.non-metric learning的方法,发现很poor
在这里插入图片描述
2.对应上表,different metric learning和different architeure
结论是DenseNet121的网络结构+Xcent+Htri的Loss效果最好
在这里插入图片描述
3.对应上表的图,果然还是要有一表一图
在这里插入图片描述
4.在DenseNet121上的不同的Norm的可视化结果,选了两个example,还挺占篇幅的
在这里插入图片描述
5.在行人重识别数据集上用不同的方法做实验,发现DenseNet121+Xcent的方法competitive(但是我觉得很奇怪,为什么要和行人重数据集比,该数据集是做车辆的,而且方法densenet121+xcent也不是作者提出来的,而且上述最好的方法不是densenet121+xcent+htri吗,为什么不用那个比)就感觉奇奇怪怪的,是不是性能越低就越说明这个数据集强
在这里插入图片描述
6.不同采样方式的影响(其实也有点不太理解为什么要做不同采样的实验)本文不是做采样研究的
拓展知识 参考论文Vehicle Re-Identification:an Efficient Baseline Using Triplet Embeddeding 都是NVIDIA做的,感觉应该是同期的工作 文章是将person reid中的triplet loss运用到vehicle reid中,并证明有效果
下面是一些采样方法的介绍
Batch的采样方式,大家一般是采用PK的采样方式,即从所有训练集的label中选出P个ID,然后每个ID选出K张图片,所以一个batch就是P
K张图片,然后按照不同的triplet,从这个Batch中选出若干triplet,每个triplet计算一个triplet loss,然后累积整个batch中所有的triplet loss之和,去进行back propagation。
BH:Batch Hard:Batch Hard就是组成一个triplet时,是从batch中寻找最hard的positive和negative
BA:Batch All:所有的正负样本都等概率用上,且无论用哪个正样本或者负样本,其weight都是一样的,这样的坏处在于训练收敛较慢,容易大部分训练时间花在了简单的triplet上,loss很小,对模型更新效果很小。但是这也有一种好处,至少我所有triplet都用得到,不容易收到个别异常的triplet的影响,防止模型跑偏
BS:Batch Sample:评估正负样本难易程度地weight计算采用多项式的形式,像BA那样所有组合都可能用上,但是又实现了更加重视hard 样本的效果
BW:Batch Weight:跟Batch All一样,都是所有组合都用上,且根据难易程度计算weight,但是weight计算方式不是多项式,而是指数函数
*

7.在不同车辆数据集上进行比较
在这里插入图片描述
8.在MTSC和目标检测上不同指标的结果
在这里插入图片描述
9.加入了时空分析的比较,对比跨摄像头多目标跟踪的最终结果
在这里插入图片描述


我的思考

这篇文章推出的数据集是很有挑战性的,覆盖范围广,覆盖时间长,然后有4个领域的应用,所以最后实验十分丰富,但是感觉有几个没有必要,图表还是有借鉴意义的

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值