问题描述
在一个定义了直角坐标系的纸上,画一个(x1,y1)到(x2,y2)的矩形指将横坐标范围从x1到x2,纵坐标范围从y1到y2之间的区域涂上颜色。
下图给出了一个画了两个矩形的例子。第一个矩形是(1,1) 到(4, 4),用绿色和紫色表示。第二个矩形是(2, 3)到(6, 5),用蓝色和紫色表示。图中,一共有15个单位的面积被涂上颜色,其中紫色部分被涂了两次,但在计算面积时只计算一次。在实际的涂色过程中,所有的矩形都涂成统一的颜色,图中显示不同颜色仅为说明方便。
给出所有要画的矩形,请问总共有多少个颜单位的面积被涂上色。
输入格式
输入的第一行包含一个整数n,表示要画的矩形的个数。
接下来n行,每行4个非负整数,分别表示要画的矩形的左下角的横坐标与纵坐标,以及右上角的横坐标与纵坐标。
输出格式
输出一个整数,表示有多少个单位的面积被涂上颜色。
样例输入
2
1 1 4 4
2 3 6 5
样例输出
15
评测用例规模与约定
1<=n<=100,0<=横坐标、纵坐标<=100。
思路:采用先标记最后再统计的方式,这里在处理输入矩阵横、纵坐标的时候有点小技巧,node.r记录了矩阵的两个边界的列坐标,而node.c记录了矩阵的两个边界的横坐标,然后简单循环就搞定!
代码:
#include<stdio.h>
#include <iostream>
#include <algorithm>
using namespace std;
struct where{
int r[2]; //列
int c[2]; //行
}node[100];
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
cin>>node[i].r[0]>>node[i].c[0]>>node[i].r[1]>>node[i].c[1];
}
bool flag[100][100];
for(int i=0;i<100;i++){
for(int j=0;j<100;j++){
flag[i][j]=false;
}
}
int count=0;//矩阵个数
while(count!=n){
for(int i=node[count].c[0];i<node[count].c[1];i++){
for(int j=node[count].r[0];j<node[count].r[1];j++){
flag[i][j]=true;
}
}
count=count+1;
}
int ccc=0;
for(int i=0;i<100;i++){
for(int j=0;j<100;j++){
if(flag[i][j]==true){
ccc++;
}
}
}
cout<<ccc;
return 0;
}