PyTorch基础
一、基本数据类型-张量
Python与PyTorch中基本数据类型的对比

string在PyTorch中的表示方式有两种:
1.One-hot编码[0, 1, 0, 0, …],但该方式不能体现词与词之间的相关性
2.Embedding(略)
常用内建数据类型:
| CPU | GPU |
|---|---|
| torch.FloatTensor | torch.cuda.FloatTensor |
| torch.IntTensor | torch.cuda.IntTensor |
| torch.ByteTensor | torch.cuda.ByteTensor |
类型检查

标量

维度检查

注:shape是数据成员;而size()是成员函数
维度为1的向量

注1:维度为1的向量常用于表示偏置(Bias)和线性层输入
注2:dim/rank和size/shape的区分:
dim表示维度;在数学中为rank
size是指tensor的具体形状
维度为2的向量

注:维度为2的向量常用于线性batch输入
维度为3的向量

注:维度为3的向量常用于RNN batch输入(RNN常用于NLP)
维度为4的向量
CNN:[batch, channel, height, width]
补充:


这篇博客详细介绍了PyTorch中的基本数据类型-张量,包括Python与PyTorch数据类型的对比,张量的创建方法如正态分布、等差数列和随机打散,以及索引与切片的操作,如掩码索引和take函数。此外,还探讨了维度变换,如增加、删除和扩展维度,以及矩阵转置和维度交换。内容适合PyTorch初学者掌握基本操作。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=107424125&d=1&t=3&u=efe24271a2284b91b703a35c47201c1e)

被折叠的 条评论
为什么被折叠?



