PyTorch自用笔记(第二周-基础篇)

这篇博客详细介绍了PyTorch中的基本数据类型-张量,包括Python与PyTorch数据类型的对比,张量的创建方法如正态分布、等差数列和随机打散,以及索引与切片的操作,如掩码索引和take函数。此外,还探讨了维度变换,如增加、删除和扩展维度,以及矩阵转置和维度交换。内容适合PyTorch初学者掌握基本操作。
摘要由CSDN通过智能技术生成

一、基本数据类型-张量

Python与PyTorch中基本数据类型的对比

在这里插入图片描述
string在PyTorch中的表示方式有两种:
1.One-hot编码[0, 1, 0, 0, …],但该方式不能体现词与词之间的相关性
2.Embedding(略)
常用内建数据类型:

CPU GPU
torch.FloatTensor torch.cuda.FloatTensor
torch.IntTensor torch.cuda.IntTensor
torch.ByteTensor torch.cuda.ByteTensor

类型检查

在这里插入图片描述

标量

在这里插入图片描述

维度检查

在这里插入图片描述
注:shape是数据成员;而size()是成员函数

维度为1的向量

在这里插入图片描述
注1:维度为1的向量常用于表示偏置(Bias)和线性层输入
注2:dim/rank和size/shape的区分:
dim表示维度;在数学中为rank
size是指tensor的具体形状

维度为2的向量

在这里插入图片描述
注:维度为2的向量常用于线性batch输入

维度为3的向量

在这里插入图片描述
注:维度为3的向量常用于RNN batch输入(RNN常用于NLP)

维度为4的向量

CNN:[batch, channel, height, width]
补充:
在这里插入图片描述

二、创建Tensor

从numpy引入数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值