注:该文章取自CVPR2021
源码:https://github.com/bismex/MetaBIN
Abstract
有监督的person re-id方法已经具有良好性能,但对于不可见的域,泛化能力较弱。
许多现有的方法采用instance normalization(实例正则化,消除风格),但instance normalization会丢失关键的判别信息。
本文提出的MetaBIN方法main idea:通过元学习的pipeline预先模拟不成功的泛化场景(Under-style-normalization
和 Over-style-normalization)来泛化normalization layers
为此,作者将可学习的batch-instance normalization layers与元学习相结合,进行研究。
此外,作者通过具有循环内部更新机制的meta-train损失,增强了泛化能力。
MetaBIN框架防止了模型在源域上的过拟合,在没有额外数据扩充和复杂网络设计的情况下提高了泛化能力。
1. Introduction
简单介绍了下Person Re-ID任务和传统的有监督的方法的缺点(需要大量标记且泛化能力差),于是出现了UDA(无监督域适应)的方法。
相比UDA方法,DG(域泛化)方法,更适用于现实场景,这里需要简单介绍下元学习开山之作MAML算法: