paper reading(1)-Meta Batch-Instance Normalization for Generalizable Person Re-Identification

论文提出了MetaBIN方法,通过结合元学习和可学习的批量实例规范化层,解决有监督行人重识别在未知域的泛化问题。MetaBIN通过模拟不同风格归一化情况,寻找BN和IN之间的平衡,防止过拟合,提高泛化能力。通过域级别的采样和元学习,MetaBIN在没有额外数据和复杂网络设计的情况下提升了泛化性能。
摘要由CSDN通过智能技术生成

注:该文章取自CVPR2021
源码:https://github.com/bismex/MetaBIN

Abstract

有监督的person re-id方法已经具有良好性能,但对于不可见的域,泛化能力较弱。
许多现有的方法采用instance normalization(实例正则化,消除风格),但instance normalization会丢失关键的判别信息。
本文提出的MetaBIN方法main idea:通过元学习的pipeline预先模拟不成功的泛化场景(Under-style-normalization
和 Over-style-normalization)来泛化normalization layers
为此,作者将可学习的batch-instance normalization layers与元学习相结合,进行研究。
此外,作者通过具有循环内部更新机制的meta-train损失,增强了泛化能力。
MetaBIN框架防止了模型在源域上的过拟合,在没有额外数据扩充和复杂网络设计的情况下提高了泛化能力。

1. Introduction

简单介绍了下Person Re-ID任务和传统的有监督的方法的缺点(需要大量标记且泛化能力差),于是出现了UDA(无监督域适应)的方法。
相比UDA方法,DG(域泛化)方法,更适用于现实场景,这里需要简单介绍下元学习开山之作MAML算法:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值