【高等数学】微积分----教你如何简单地推导求导公式(二)

本文通过几何图形,直观解析了1/x及sinx、cosx等函数的微积分推导过程,强调dx接近0时的变化,揭示了长方形面积恒定下的导数规律,以及三角函数在圆中变化的导数特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在开头前请一定要记住一个很重要的东西:dx 的增长并没有以下图例所示的那么大,一般是越接近于 0 越好,比如dx = 0.0000000001 ,只是为了更加直观地查看到图形的变化,所以以下例子将其放大,很多时候变量 x 增加一丢丢意味着在公式里面可以被忽略,或者在圆中增加一丢丢变量 x 所组成的三角形,圆的弧形可以近似看作直线~

话接上篇:【高等数学】微积分----教你如何简单地推导求导公式(一)

我们继续讲解下几个函数的几何推导

——————————————下面是正文————————————————

一.f(x) = 1/x 的求导

       对于该函数,可以这样设想:有什么函数f(x)可以使得公式 f(x) * x = 1 ?结果可以轻而易举地得出是 f(x) = 1/x ,所以几何图形可以这样子来描绘:

                                          

        而从导数层面来理解,就可以假设:如果当变量 x 增加一丢丢的时候(专业符号为 dx ),那么 f(x) 将会增加多少呢?注意,由于面积固定为 1,所以长方体长短变化并不会影响面积:

                                      

       如此,利用变量 x 增加一丢丢会导致 1/x 减少但是面积依旧保持不变这个特征,可以得出以下公式:

              

二.f(x) = sinx(或者:f(x) = cosx) 的求导

       三角函数的求导公式推理比较简单,可以利用来进行验证:

                                               

        正弦函数 sin(a) 以及余弦函数 cos(a) 在直角三角形上分别等于两条边的比值,如在上图中可以这样来表示:

                                                      

                                                   

       所以,sin(a) 可以代表三角线的高,cos(a) 代表三角形的长。根据导数层面来理解,就可以假设:如果当变量 a 增加一丢丢的时候(专业符号为 da ),那么 f(x) (d[sin(a)])将会增加多少呢?

                                               

          可以轻易的证明得,图上的小三角形与大三角形是相似的,所以求出其导数公式为:

                                                             

          而公式 cos(a) 也如法炮制:

                                                

     可以看到的是,当变量 a 增加一丢丢之后,得到的改变 d(cos(a)) 是比原来减少的,所以最后的得到的 d(cos(a)) 应该为负

                                                       

参考文献:www.patreon.com/3blue1brown

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

师兄师兄怎么办

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值