微积分中的有一个很重要的东西:导数
众所周知(好吧,这么难谁都不知道好吧......),导数主要可以观察到函数值对变量的细微变化的敏感度,具体的解析可以查看我写过的一篇文章(如果没有连接的话应该还没更新)
下面就当你知道了导数是干啥的
以这个基础来了解下那些求导公式是怎么来的~~
——————————————下面是正文————————————————
开头先来看一下由 百度百科 找出来的求导公式表的一部分:
这些公式当然需要记住的啦,而有些童鞋可能死记硬背都背不齐这些公式,究其原因可能是因为不知道公式从何而来,学会如何去推理出这些公式,则会加强对于公式的理解以及记忆,本片文章采用几何方法来进行推导。如果你已经看过我开头说过的那篇文章,相信你已经知道导数中各个符号所代表的含义,下面将挑选几个比较常用的求导公式来推导,会这几个的话其他也差不多
一. f(x) = x^n 的求导
对于函数 f(x) =x^n 的求导,首先来推导一个简单的例子:
对于该公式,我们可以想象是求一个边长为 x 的正方形的面积公式:
而从导数层面来理解,就可以假设:如果当变量 x 增加一丢丢的时候(专业符号为 dx ),那么 f(x) 将会增加多少呢?(也就是敏感度 df):
由图上可以看到,f(x) 所增加的面积(df)为 两个长为x ,宽为dx 长方形的面积 和 一个边长为 dx 的正方形面积的总和,即:
然而实际上,dx 增长的并没有如图上所示的那么大,一般是越接近于 0 越好,比如dx = 0.0000000001 ,有个问题是,dx 并不是等同于 0 ,而是一个实实在在的数值,只是非常地接近于 0 。图上这样画出来只是为了美观,如果按照 dx = 0.001来画出来的话,那么将是如下图示:
而当dx 越接近于 0 ,那么(dx)^2 就小到可以被忽略的程度,所以最后的公式就会变成:
最终得到的结果既是函数f(x) = x^2 的导数公式。下面再来举例一个函数 f(x) = x^3 的导数公式的几何推导:
对于该公式,我们可以想象是求一个边长为 x 的正方体的体积公式:
如此,根据导数的理解:如果当变量 x 增加一丢丢的时候(专业符号为 dx ),那么 f(x) 将会增加多少呢?(也就是敏感度 df):
由图上可以看到,f(x) 所增加的体积(df)为 七个长方体的体积,即:
所以:
和之前的正方形求导相似,dx 无限接近于 0 ,所以公式中 dx^2 和 dx ^3 足够小到可以忽略,最后公式就变成了:
有了以上的分析,函数f(x) = x^n的求导将会变得更为容易一些,根据导数的理解,我们可以假设如果当变量 x 增加一丢丢的时候(专业符号为 dx ),那么 f(x) 将会增加多少呢?(也就是敏感度 df):
将公式分解出来可得:
由前面的知识我们可以得知,dx 无限接近于 0 ,所以公式中 dx^2 足够小到可以忽略,最后公式就变成了:
由图上公式可知,当变量 x^n 增加一丢丢的时候(dx),其主要增加了 nx^n-1 dx ,所以,其导数可以表述为:
以上即为函数 f(x) = x^n 的导数推理过程,更多的导数推理可以等待我的先一篇文章:【高等数学】微积分----教你如何简单地推导求导公式(二
参考文献:www.patreon.com/3blue1brown