关于为什么只统计三元环的个数就行 实际上是单独统计了某一点对所能形成的三元环的个数 再对其中任意两个组合形成答案
牛皮!!!!!
大佬博客
题目链接
方法一 大概讲的是分成两部分 当点的度小于sqrt(边数)枚举边 否则枚举点
#include <bits/stdc++.h>
#define mod 998244353
using namespace std;
typedef long long LL;
const int N = 1e5+10;
set<LL> g;
int deg[N];
vector<int> G[N];int vis[N],vi[N];
int i,j,vv;
int main()
{
int n,m,u,v,sz;
while(~scanf("%d%d",&n,&m))
{
sz=sqrt(m+0.5);
g.clear();
for(i=1;i<=n;i++)
{
vis[i]=vi[i]=deg[i]=0;
G[i].clear();
}
for(i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
g.insert(u+1LL*v*n);
g.insert(v+1LL*u*n);
deg[u]++;
deg[v]++;
G[u].push_back(v);
G[v].push_back(u);
}
LL ans=0;
for(u=1;u<=n;u++)
{
vis[u]=1;
for(v=0;v<G[u].size();v++)
vi[G[u][v]]=u;
for(v=0;v<G[u].size();v++)
{
LL cnt=0;
LL tmp=G[u][v];
if(vis[tmp])
continue;
if(deg[tmp]<=sz)
{
for(vv=0;vv<G[tmp].size();vv++)
{
LL tmp1=G[tmp][vv];
if(vi[tmp1]==u)
cnt++;
}
}
else
{
for(vv=0;vv<G[u].size();vv++)
{
LL tmp1=G[u][vv];
if(g.find(tmp*n+tmp1)!=g.end())
cnt++;
}
}
ans+=1LL*cnt*(cnt-1)/2;
//cout<<ans<<endl;
}
}
printf("%lld\n",ans);
}
return 0;
}
方法二 如果将上个方法比作点集那么这个方法就是边集 将这张图构成一张有向图 将每条边与其能组成三元环的的数量统计 最后求解 为什么不会重复 在构造边集的时候 就将 重复的可能性去掉 详细看大佬博客
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e5+10;
set<LL>g;
int deg[N];
vector<pair<int,int> >G[N];
int vi[N];
int X[N*2],Y[N*2],cnt[N],pos[N],i,j;
int main()
{
int n,m,u,v,sz;
while(~scanf("%d%d",&n,&m))
{
sz=sqrt(m);
for(i=1;i<=n;i++)
vi[i]=deg[i]=pos[i]=0,G[i].clear();
for(i=0;i<m;i++)
scanf("%d%d",&X[i],&Y[i]),u=X[i],v=Y[i],deg[u]++,deg[v]++;
for(i=0;i<m;i++)
{
cnt[i]=0;
if(deg[X[i]]>deg[Y[i]])
{
G[Y[i]].push_back(make_pair(X[i],i));
}
else
if(deg[X[i]]<deg[Y[i]])
{
G[X[i]].push_back(make_pair(Y[i],i));
}
else
if(X[i]>Y[i])
G[Y[i]].push_back(make_pair(X[i],i));
else
G[X[i]].push_back(make_pair(Y[i],i));
}
LL ans=0;
for(i=0;i<m;i++)
{
u=X[i];
v=Y[i];
for(j=0;j<G[u].size();j++)
{
pos[G[u][j].first]=G[u][j].second;
vi[G[u][j].first]=i+1;
}
for(j=0;j<G[v].size();j++)
{
if(vi[G[v][j].first]==i+1)
{
cnt[i]++;
cnt[pos[G[v][j].first]]++;
cnt[G[v][j].second]++;
}
}
}
for(i=0;i<m;i++)
ans+=1LL*cnt[i]*(cnt[i]-1)/2;
printf("%lld\n",ans);
}
}