hdu6184 判断三元环

关于为什么只统计三元环的个数就行 实际上是单独统计了某一点对所能形成的三元环的个数 再对其中任意两个组合形成答案
牛皮!!!!!
大佬博客
题目链接
方法一 大概讲的是分成两部分 当点的度小于sqrt(边数)枚举边 否则枚举点

#include <bits/stdc++.h>
#define mod 998244353
using namespace std;
typedef long long LL;
const int N = 1e5+10;
set<LL> g;
int deg[N];
vector<int> G[N];int vis[N],vi[N];
int i,j,vv;

int main()
{
    int n,m,u,v,sz;
    while(~scanf("%d%d",&n,&m))
    {
        sz=sqrt(m+0.5);
        g.clear();
        for(i=1;i<=n;i++)
        {
            vis[i]=vi[i]=deg[i]=0;
            G[i].clear();
        }
        for(i=0;i<m;i++)
        {
            scanf("%d%d",&u,&v);
            g.insert(u+1LL*v*n);
            g.insert(v+1LL*u*n);
            deg[u]++;
            deg[v]++;
            G[u].push_back(v);
            G[v].push_back(u);
        }
        LL ans=0;
        for(u=1;u<=n;u++)
        {
            vis[u]=1;
            for(v=0;v<G[u].size();v++)
                vi[G[u][v]]=u;
            for(v=0;v<G[u].size();v++)
            {
                LL cnt=0;
                LL tmp=G[u][v];
                if(vis[tmp])
                    continue;
                if(deg[tmp]<=sz)
                {
                    for(vv=0;vv<G[tmp].size();vv++)
                    {
                        LL tmp1=G[tmp][vv];
                        if(vi[tmp1]==u)
                            cnt++;
                    }
                }
                else
                {
                    for(vv=0;vv<G[u].size();vv++)
                    {
                        LL tmp1=G[u][vv];
                        if(g.find(tmp*n+tmp1)!=g.end())
                            cnt++;
                    }
                }
                ans+=1LL*cnt*(cnt-1)/2;
                //cout<<ans<<endl;
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}

方法二 如果将上个方法比作点集那么这个方法就是边集 将这张图构成一张有向图 将每条边与其能组成三元环的的数量统计 最后求解 为什么不会重复 在构造边集的时候 就将 重复的可能性去掉 详细看大佬博客

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e5+10;
set<LL>g;
int deg[N];
vector<pair<int,int> >G[N];
int vi[N];
int X[N*2],Y[N*2],cnt[N],pos[N],i,j;
int main()
{
    int n,m,u,v,sz;
    while(~scanf("%d%d",&n,&m))
    {
        sz=sqrt(m);
        for(i=1;i<=n;i++)
            vi[i]=deg[i]=pos[i]=0,G[i].clear();
        for(i=0;i<m;i++)
            scanf("%d%d",&X[i],&Y[i]),u=X[i],v=Y[i],deg[u]++,deg[v]++;
        for(i=0;i<m;i++)
        {
            cnt[i]=0;
            if(deg[X[i]]>deg[Y[i]])
            {
                G[Y[i]].push_back(make_pair(X[i],i));
            }
            else
                if(deg[X[i]]<deg[Y[i]])
                {
                    G[X[i]].push_back(make_pair(Y[i],i));
                }
                else
                    if(X[i]>Y[i])
                        G[Y[i]].push_back(make_pair(X[i],i));
                    else
                        G[X[i]].push_back(make_pair(Y[i],i));            
        }
        LL ans=0;
        for(i=0;i<m;i++)
        {
            u=X[i];
            v=Y[i];
            for(j=0;j<G[u].size();j++)
            {
                pos[G[u][j].first]=G[u][j].second;
                vi[G[u][j].first]=i+1;
            }
            for(j=0;j<G[v].size();j++)
            {
                if(vi[G[v][j].first]==i+1)
                {
                    cnt[i]++;
                    cnt[pos[G[v][j].first]]++;
                    cnt[G[v][j].second]++;
                }
            }
        }
        for(i=0;i<m;i++)
            ans+=1LL*cnt[i]*(cnt[i]-1)/2;
        printf("%lld\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值