利用官方预训练模型快速计算Inception Score和FID

本文介绍了如何利用Tensorflow和Pytorch的预训练Inception V3模型,快速实现Inception Score(IS)和Frechet Inception Distance(FID)的计算,以评估生成式模型的性能。IS通过衡量生成图片与Inception Net-V3预测的概率分布之间的KL散度来评估质量,而FID则通过比较真实和生成图像特征向量的分布差异来判断生成图像的逼真度。文章提供了详细的计算方法和代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:对于生成式模型来说,如何评价是一个难题,特别是对于GANs这种容易坍塌的模型来说,选择合适的度量指标是关键。IS和FID是最常用的两种指标,都依赖于Inception模型。本文介绍如何利用tensorflow/pytorch官方提供的预训练Inception V3模型,五分钟内搭建自己的IS和FID计算代码。

目录

IS简介

FID简介

 计算公式

计算方法

IS快速开始代码

tensorflow版本

pytorch版本

FID快速开始代码

完整示例

参考:


IS简介

IS基于Google的预训练网络Inception Net-V3,Inception Net-V3是精心设计的卷积网络模型,输入为图片张量,输出为1000维向量。输出向量的每个维度的值对应图片属于某类的概率,因此整个向量可以看做一个概率分布。

p(y|x)表示Inception输入生成图像x时的输出分布,P(x)表示生成器G生成图像x的概率,P(yi|x)表示Inception预测x为第i类的概率,IS是衡量两者之间的KL散度:

IS越大,生成图片的质量越高。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值