大致题意:
给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操作后,所能得到的最大元素总和。
换句话说,你可以从原数组中选出一个子数组,并可以决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,然后该子数组(剩下)的元素总和是所有子数组之中最大的。
注意,删除一个元素后,子数组 不能为空。
解题思路:
该题的思路可以分两步走,利用dp的思想,先求出给出arr数组中每个数的左右两边的最大连续和,得出了如下一个递推式:
l[i]=max(l[i-1]+arr[i],arr[i]),r[i]=max(r[i+1]+arr[i],arr[i]);
第二步则为枚举从1到arr.size()-1,求出两边的和的最大值,即:maxn1=max(l[i-1]+r[i+1],maxn1);
还有一个细节,就是假如全部是负数时,则返回一个最大的负数,则先将最大值保存再去做之后的递推
for(int i=1;i<as;i++)
{
l[i]=max(l[i-1]+arr[i],arr[i]);
max0=max(l[i],max0);
}
AC代码:
class Solution {
public:
int maximumSum(vector<int>& arr) {
int as=arr.size();
vector<int> l(as,0);
vector<int> r(as,0);
int max0,max1;
l[0]=arr[0];
max0=l[0];
for(int i=1;i<as;i++)
{
l[i]=max(l[i-1]+arr[i],arr[i]);
max0=max(l[i],max0);
}
r[as-1]=arr[as-1];
for(int i=as-2;i>=0;i--)
{
r[i]=max(r[i+1]+arr[i],arr[i]);
}
max1=max0;
for(int i=1;i<as-1;i++)//insert minus one
{
max1=max(l[i-1]+r[i+1],max1);
}
return max1;
}
};