(系列笔记)16.HMM系列(2)

本文详细探讨了HMM的三个基本问题:概率计算问题,旨在评估观测序列与模型的匹配度;预测问题,用于寻找最可能的状态序列;以及学习问题,涉及如何训练模型以最佳描述观测数据。通过一个轮盘赌的例子,解释了如何应用HMM解决这些实际问题。
摘要由CSDN通过智能技术生成

HMM——三个基本问题

和之前几个模型对比,HMM比较奇怪,其他模型都是直接把特征对应成一个结果,当然,这个结果的取值本身是可以连续的(回归模型)或者离散的(分类模型),不过整个过程里涉及到的也就上输入变量(特征)和预测结果两部分数据。
HMM却是变量自己就分成两类:状态变量和观测变量,而且,模型的运行过程也是来来回回这两类变量之间转圈,这到底有什么用呢?

HMM的三个基本问题

概率计算问题

问题名称: 概率计算问题,又称评价(Evaluation)问题。
已知信息:

  • 模型 λ = [ A , B , π ] \lambda=[A,B,\pi] λ=[A,B,π]
  • 观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_1,o_2,...,o_T) O=(o1,o2,...,oT)
    **求解目标:**计算在给定模型 λ \lambda λ下,已知观测序列O出现的概率: P ( O ∣ λ ) P(O|\lambda) P(Oλ),也就是说,给定观测序列,求它和评估模型之间的匹配度。
预测问题

问题名称: 预测问题,又称解码(Decoding)问题。
已知信息:

  • 模型 λ = [ A , B , π ] \lambda=[A,B,\pi] λ=[A,B,π]
  • 观测序列 O = ( o 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值