HMM——三个基本问题
和之前几个模型对比,HMM比较奇怪,其他模型都是直接把特征对应成一个结果,当然,这个结果的取值本身是可以连续的(回归模型)或者离散的(分类模型),不过整个过程里涉及到的也就上输入变量(特征)和预测结果两部分数据。
HMM却是变量自己就分成两类:状态变量和观测变量,而且,模型的运行过程也是来来回回这两类变量之间转圈,这到底有什么用呢?
HMM的三个基本问题
概率计算问题
问题名称: 概率计算问题,又称评价(Evaluation)问题。
已知信息:
- 模型 λ = [ A , B , π ] \lambda=[A,B,\pi] λ=[A,B,π]
- 观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_1,o_2,...,o_T) O=(o1,o2,...,oT)
**求解目标:**计算在给定模型 λ \lambda λ下,已知观测序列O出现的概率: P ( O ∣ λ ) P(O|\lambda) P(O∣λ),也就是说,给定观测序列,求它和评估模型之间的匹配度。
预测问题
问题名称: 预测问题,又称解码(Decoding)问题。
已知信息:
- 模型 λ = [ A , B , π ] \lambda=[A,B,\pi] λ=[A,B,π]
- 观测序列 O = ( o 1