- 博客(2)
- 资源 (2)
- 收藏
- 关注
转载 Day2:逻辑回归算法梳理
目录 1.逻辑回归与线性回归的联系与区别 2.逻辑回归的原理、损失函数推导及优化 3.正则化与模型评估指标 4.逻辑回归的优缺点 5.样本不均衡问题解决办法 1 逻辑回归与线性回归的联系与区别 联系 两者都是通过已知数据和拟合函数来训练未知参数,使得拟合损失到达最小,然后用所得的拟合函数进行预测。 逻辑回归通过somgid函数,将R范围内的取值映射到[0,1]上。 区别 线性回归训练参数方法是...
2019-04-01 21:36:10
173
转载 Day1 :线性回归算法梳理
目录 1.机器学习的相关概念 2.线性回归 原理 损失函数、代价函数、目标函数 评估指标 3.优化方法 梯度下降法 牛顿法 拟牛顿法 4.sklearn参数详解 1 机器学习基本概念 监督学习与非监督学习 统计学习包括监督学习(supervised learning)、非监督学习(unsupervised learning)、半监督(semi-supervised learning)、强...
2019-03-31 22:38:05
221
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人