MATLAB数值计算之常微分方程的初始值问题求解-向前欧拉算法、泰勒级数算法,Runge-Kutta算法

这篇博客探讨了MATLAB中常微分方程的初始值问题,介绍了向前欧拉、泰勒级数和Runge-Kutta算法的原理,并通过实例展示了它们的应用。欧拉算法是最基础的方法,泰勒级数算法增加了精度,而Runge-Kutta算法则提供了更高的阶数选择,以平衡精度和计算复杂度。
摘要由CSDN通过智能技术生成

Tip:在接下来,我会更新一些关于MATLAB数值计算的博客,像常微分方程的初始值问题求解,求微分积分,解线性方程与非线性方程组,差值与拟合还有求极值等,需要的小伙伴可以关注一下

常微分方程的初始值问题

一、一般形式:

常微分方程的初始值问题一般形式为:
{ d y d x = f ( x , y ) y ( x 0 ) = y 0 \begin{cases} \dfrac{dy}{dx} =f(x,y)\\ y(x_0)=y_0 \end{cases} dxdy=f(x,y)y(x0)=y0

二、三种求解算法:

1.向前欧拉(Euler)算法
原理:

在这里插入图片描述
知道一个点(x0,y0)和斜率,就可以推得下一个x点的y值对应为:
y = y 0 + d y d x ∣ x 0 × ( x − x 0 ) y=y_0+\dfrac{dy}{dx} |_{x_{0}}\times(x-x_0) y=y0+dxdyx0×(xx0)
由于一阶导数就是f(x,y),把式子化成
y = y 0 + f ( x 0 , y 0 ) × ( x − x 0 ) y=y_0+f(x_0,y_0)\times(x-x_0) y=y0+fx0,y0×(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值