elasticsearch

简介

官网
elasticsearch 全文搜索属于最常见的需求,开源的 Elasticsearch 是目前全文搜索引擎的首选。 它可以快速地储存、搜索和分析海量数据。维基百科、Stack Overflow、Github 都采用它 Elastic 的底层是开源库 Lucene。但是,你没法直接用 Lucene,必须自己写代码去调用它的 接口。Elastic 是 Lucene 的封装,提供了 REST API 的操作接口,开箱即用。
REST API:天然的跨平台。
官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
官方中文:https://www.elastic.co/guide/cn/elasticsearch/guide/current/foreword_id.html
社区中文: https://es.xiaoleilu.com/index.html http://doc.codingdict.com/elasticsearch/0/

一、基本概念

1、Index(索引)

动词,相当于 MySQL 中的 insert; 名词,相当于 MySQL 中的 Database

2、Type(类型)

8.0后已取消 ,因为检索机制不分类型检索,只会直接找索引下的数据
在 Index(索引)中,可以定义一个或多个类型。 类似于 MySQL 中的 Table;每一种类型的数据放在一起;

3、Document(文档)

保存在某个索引(Index)下,某种类型(Type)的一个数据(Document),文档是 JSON 格 式的,Document 就像是 MySQL 中的某个 Table 里面的内容;

4、倒排索引机制

在这里插入图片描述

二、Docker 安装 Es

1、下载镜像文件

docker pull elasticsearch:7.4.2  #存储和检索数据 
docker pull kibana:7.4.2  #可视化检索数据 

2、创建实例

1、ElasticSearch

mkdir -p /mydata/elasticsearch/config  创建外部配置与容器内挂载,方便更改配置
mkdir -p /mydata/elasticsearch/data echo "http.host: 0.0.0.0" >> /mydata/elasticsearch/config/elasticsearch.yml 创建数据文件并加入数据(所有IP网络可以连接)
chmod -R 777 /mydata/elasticsearch/ 保证权限 
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \ 
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx512m" \ 
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \ 
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
 -v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \ 
 -d elasticsearch:7.4.2   #9200外部访问,9300内部集群间相互访问

以后再外面装好插件重启即可; 特别注意: -e ES_JAVA_OPTS=“-Xms64m -Xmx256m” \ 测试环境下,设置 ES 的初始内存和最大内存,否则导 致过大启动不了 ES

2、Kibana

docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.56.10:9200 -p 5601:5601 \ -d kibana:7.4.2
http://192.168.56.10:9200 一定改为自己虚拟机的地址

三、初步检索

1、_cat

GET /_cat/nodes:查看所有节点
GET /_cat/health:查看 es 健康状况
GET /_cat/master:查看主节点
GET /_cat/indices:查看所有索引 show databases;

2、索引一个文档(保存)

保存一个数据,保存在哪个索引的哪个类型下,指定用哪个唯一标识 PUT customer/external/1;
在 customer 索引下的 external 类型下保存 1 号数据为

 PUT customer/external/1
{ "name": "John Doe" }

PUT 和 POST 都可以, POST 新增。如果不指定 id,会自动生成 id。指定 id 就会修改这个数据,并新增版本号 PUT 可以新增可以修改。PUT 必须指定 id;由于 PUT 需要指定 id,我们一般都用来做修改 操作,不指定 id 会报错。

3、查询文档

GET customer/external/1 
结果:
 {
  "_index": "customer", //在哪个索引 
  "_type": "external", //在哪个类型 
  "_id": "1", //记录 id 
  "_version": 2, //版本号 
  "_seq_no": 1, //并发控制字段,每次更新就会+1,用来做乐观锁 
  "_primary_term": 1, //同上,主分片重新分配,如重启,就会变化 
  "found": true, 
  "_source": { //真正的内容 
  		"name": "John Doe" 
 		 }
   }

更新携带 ?if_seq_no=0&if_primary_term=1

4、更新文档

POST customer/external/1/_update 
{ "doc":{ "name": "John Doew" } }
或者
POST customer/external/1 { "name": "John Doe2" }
或者
PUT customer/external/1 { "name": "John Doe" }

 不同:POST 操作会对比源文档数据,如果相同不会有什么操作,文档 version 不增加 PUT 操作总会将数据重新保存并增加 version 版本; 带_update 对比元数据如果一样就不进行任何操作。
看场景; 对于大并发更新,不带 update; 对于大并发查询偶尔更新,带 update;对比更新,重新计算分配规则。
 更新同时增加属性

POST customer/external/1/_update
{ "doc": { "name": "Jane Doe", "age": 20 } }

PUT 和 POST 不带_update 也可以

5、删除文档&索引

DELETE customer/external/1 DELETE customer

6、bulk 批量

API POST customer/external/_bulk
{“index”:{“_id”:“1”}}
{“name”: “John Doe” }
{“index”:{“_id”:“2”}}
{“name”: “Jane Doe” }
语法格式: { action: { metadata }}\n { request body }\n { action: { metadata }}\n { request body }\n
复杂实例: POST /_bulk { “delete”: { “_index”: “website”, “_type”: “blog”, “_id”: “123” }} { “create”: { “_index”: “website”, “_type”: “blog”, “_id”: “123” }}
{ “title”: “My first blog post” } { “index”: { “_index”: “website”, “_type”: “blog” }} { “title”: “My second blog post” }
{ “update”: { “_index”: “website”, “_type”: “blog”, “_id”: “123”, “_retry_on_conflict” : 3} }
{ “doc” : {“title” : “My updated blog post”} }
bulk API 以此按顺序执行所有的 action(动作)。如果一个单个的动作因任何原因而失败, 它将继续处理它后面剩余的动作。当 bulk API 返回时,它将提供每个动作的状态(与发送 的顺序相同),所以您可以检查是否一个指定的动作是不是失败了。

7、样本测试数据

我准备了一份顾客银行账户信息的虚构的 JSON 文档样本。每个文档都有下列的 schema (模式): { “account_number”: 0, “balance”: 16623, “firstname”: “Bradshaw”, “lastname”: “Mckenzie”, “age”: 29, “gender”: “F”, “address”: “244 Columbus Place”, “employer”: “Euron”, “email”: “bradshawmckenzie@euron.com”, “city”: “Hobucken”, “state”: “CO” }https://github.com/elastic/elasticsearch/blob/master/docs/src/test/resources/accounts.json?raw =true 导入测试数据 POST bank/account/_bulk 测试数据

四、进阶检索

1、SearchAPI ES 支持两种基本方式检索 :
 一个是通过使用 REST request URI 发送搜索参数(uri+检索参数)
 另一个是通过使用 REST request body 来发送它们(uri+请求体)

1)、检索信息

 一切检索从_search 开始 GET bank/_search 检索 bank 下所有信息,包括 type 和 docs

GET bank/_search?q=*&sort=account_number:asc 
请求参数方式检索 响应结果解释: 
took - Elasticsearch 执行搜索的时间(毫秒) 
time_out - 告诉我们搜索是否超时 
_shards - 告诉我们多少个分片被搜索了,以及统计了成功/失败的搜索分片 
hits - 搜索结果 
hits.total - 搜索结果 
hits.hits - 实际的搜索结果数组(默认为前 10 的文档) 
sort - 结果的排序 key(键)(没有则按 score 排序) 
score 和 max_score –相关性得分和最高得分(全文检索用) 

 uri+请求体进行检索
GET bank/_search
{ “query”: { “match_all”: {} },“sort”: [ { “account_number”: { “order”: “desc” } } ] }
HTTP 客户端工具(POSTMAN),
get 请求不能携带请求体,我们变为 post 也是一样的 我们 POST 一个 JSON 风格的查询请求体到 _search API。 需要了解,一旦搜索的结果被返回,Elasticsearch 就完成了这次请求,并且不会维护任何 服务端的资源或者结果的 cursor(游标)

2、Query DSL

1)、基本语法格式

Elasticsearch 提供了一个可以执行查询的 Json 风格的 DSL(domain-specific language 领域特 定语言)。这个被称为 Query DSL。该查询语言非常全面,并且刚开始的时候感觉有点复杂, 真正学好它的方法是从一些基础的示例开始的。
 一个查询语句 的典型结构
{ QUERY_NAME: { ARGUMENT: VALUE, ARGUMENT: VALUE,… } }
 如果是针对某个字段,那么它的结构如下:
{ QUERY_NAME: { FIELD_NAME: { ARGUMENT: VALUE, ARGUMENT: VALUE,… } } }
GET bank/_search { “query”: { “match_all”: {} },“from”: 0, “size”: 5, “sort”: [ { “account_number”: { “order”: “desc” } } ] }
 query 定义如何查询,
 match_all 查询类型【代表查询所有的所有】,es 中可以在 query 中组合非常多的查 询类型完成复杂查询
 除了 query 参数之外,我们也可以传递其它的参数以改变查询结果。如 sort,size  from+size 限定,完成分页功能
 sort 排序,多字段排序,会在前序字段相等时后续字段内部排序,否则以前序为准

2)、返回部分字段

GET bank/_search { “query”: {
“match_all”: {} },“from”: 0, “size”: 5, “_source”: [“age”,“balance”] }

3)、match【匹配查询】

 基本类型(非字符串),精确匹配
GET bank/_search { “query”: { “match”: { “account_number”: “20” } } }match 返回 account_number=20 的
 字符串,全文检索
GET bank/_search { “query”: { “match”: { “address”: “mill” } } }
最终查询出 address 中包含 mill 单词的所有记录 match 当搜索字符串类型的时候,会进行全文检索,并且每条记录有相关性得分。
 字符串,多个单词(分词+全文检索)
GET bank/_search { “query”: { “match”: { “address”: “mill road” } } }
最终查询出 address 中包含 mill 或者 road 或者 mill road 的所有记录,并给出相关性得分

4)、match_phrase【短语匹配】

将需要匹配的值当成一个整体单词(不分词)进行检索
GET bank/_search { “query”: { “match_phrase”: { “address”: “mill road” } } }
查出 address 中包含 mill road 的所有记录,并给出相关性得分

5)、multi_match【多字段匹配】

GET bank/_search { “query”: { “multi_match”: { “query”: “mill”, “fields”: [“state”,“address”] } } }
state 或者 address 包含 mill

6)、bool【复合查询】

bool 用来做复合查询: 复合语句可以合并 任何 其它查询语句,包括复合语句,了解这一点是很重要的。这就意味 着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。
 must:必须达到 must 列举的所有条件
GET bank/_search { “query”: { “bool”: { “must”: [ { “match”: { “address”: “mill” } },
{ “match”: { “gender”: “M” } } ] } } }
 should:应该达到 should 列举的条件,如果达到会增加相关文档的评分,并不会改变 查询的结果。如果 query 中只有 should 且只有一种匹配规则,那么 should 的条件就会 被作为默认匹配条件而去改变查询结果
GET bank/_search { “query”: { “bool”: { “must”: [ { “match”: { “address”: “mill” } },
{ “match”: { “gender”: “M” } } ],“should”: [ {“match”: { “address”: “lane” }} ] } } }
 must_not 必须不是指定的情况
GET bank/_search { “query”: { “bool”: { “must”: [ { “match”: { “address”: “mill” } }, { “match”: { “gender”: “M” } } ],“should”: [ {“match”: { “address”: “lane” }} ],“must_not”: [ {“match”: { “email”: “baluba.com” }} ] } }
}
address 包含 mill,并且 gender 是 M,如果 address 里面有 lane 最好不过,但是 email 必 须不包含 baluba.com

7)、filter【结果过滤】

并不是所有的查询都需要产生分数,特别是那些仅用于 “filtering”(过滤)的文档。为了不 计算分数 Elasticsearch 会自动检查场景并且优化查询的执行。
GET bank/_search { “query”: { “bool”: { “must”: [ {“match”: { “address”: “mill”}} ],“filter”: { “range”: { “balance”: { “gte”: 10000, “lte”: 20000 } } } } } }

8)、term 和 match 一样。匹配某个属性的值。

全文检索字段用 match,其他非 text 字段匹配用 term。
GET bank/_search { “query”: { “bool”: { “must”: [ {“term”: { “age”: { “value”: “28” } }}, {“match”: { “address”: “990 Mill Road” }} ] } } }

9)、aggregations(执行聚合)

聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于 SQL GROUP BY 和 SQL 聚合函数。在 Elasticsearch 中,您有执行搜索返回 hits(命中结果),并且同时返 回聚合结果,把一个响应中的所有 hits(命中结果)分隔开的能力。这是非常强大且有效的, 您可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用 一次简洁和简化的 API 来避免网络往返。
 搜索 address 中包含 mill 的所有人的年龄分布以及平均年龄,但不显示这些人的详情。
GET bank/_search { “query”: { “match”: { “address”: “mill” } },“aggs”: { “group_by_state”: { “terms”: { “field”: “age” } },“avg_age”: { “avg”: {
“field”: “age” } } },“size”: 0 }
size:0 不显示搜索数据
aggs:执行聚合。
聚合语法如下
“aggs”: { “aggs_name 这次聚合的名字,方便展示在结果集中”:
{ “AGG_TYPE 聚合的类型(avg,term,terms)”: {} } },
复杂: 按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
GET bank/account/_search { “query”: { “match_all”: {} },“aggs”: { “age_avg”: { “terms”: { “field”: “age”, “size”: 1000 },“aggs”: { “banlances_avg”: { “avg”: { “field”: “balance” } } } } },“size”: 1000 }
复杂:查出所有年龄分布,并且这些年龄段中 M 的平均薪资和 F 的平均薪资以及这个年龄 段的总体平均薪资
GET bank/account/_search
{ “query”: { “match_all”: {} },“aggs”: { “age_agg”: { “terms”: { “field”: “age”, “size”: 100 },“aggs”: { “gender_agg”: { “terms”: { “field”: “gender.keyword”, “size”: 100 },“aggs”: { “balance_avg”: { “avg”: { “field”: “balance” } } } },“balance_avg”:{ “avg”: { “field”: “balance” } } } } },“size”: 1000 }

3、Mapping

1)、字段类型

2)、映射 Mapping

(映射) Mapping 是用来定义一个文档(document),以及它所包含的属性(field)是如何存储和 索引的。比如,使用 mapping 来定义:  哪些字符串属性应该被看做全文本属性(full text fields)。
 哪些属性包含数字,日期或者地理位置。
 文档中的所有属性是否都能被索引(_all 配置)。
 日期的格式。
 自定义映射规则来执行动态添加属性。
 查看 mapping 信息: GET bank/_mapping  修改 mapping 信息 https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html 自动猜测的映射类型

3)、新版本改变 Es7 及以上移除了 type 的概念。

 关系型数据库中两个数据表示是独立的,即使他们里面有相同名称的列也不影响使用, 但 ES 中不是这样的。elasticsearch 是基于 Lucene 开发的搜索引擎,而 ES 中不同 type 下名称相同的 filed 最终在 Lucene 中的处理方式是一样的。
 两个不同 type 下的两个 user_name,在 ES 同一个索引下其实被认为是同一个 filed, 你必须在两个不同的 type 中定义相同的 filed 映射。否则,不同 type 中的相同字段 名称就会在处理中出现冲突的情况,导致 Lucene 处理效率下降。
 去掉 type 就是为了提高 ES 处理数据的效率。 Elasticsearch 7.x
 URL 中的 type 参数为可选。比如,索引一个文档不再要求提供文档类型。 Elasticsearch 8.x
 不再支持 URL 中的 type 参数。
解决:1)、将索引从多类型迁移到单类型,每种类型文档一个独立索引
2)、将已存在的索引下的类型数据,全部迁移到指定位置即可。详见数据迁移
1、创建映射
1、创建索引并指定映射 PUT /my-index { “mappings”: { “properties”: {
“age”: { “type”: “integer” }, “email”: { “type”: “keyword” }, “name”: { “type”: “text” } } } }
2、添加新的字段映射 PUT /my-index/_mapping { “properties”: { “employee-id”: { “type”: “keyword”, “index”: false } } }
3、更新映射 对于已经存在的映射字段,我们不能更新。更新必须创建新的索引进行数据迁移
4、数据迁移 先创建出 new_twitter 的正确映射。然后使用如下方式进行数据迁移 POST _reindex [固定写法] { “source”: { “index”: “twitter” },“dest”: { “index”: “new_twitter” } }将旧索引的 type 下的数据进行迁移 POST _reindex { “source”: {
“index”: “twitter”, “type”: “tweet” },“dest”: { “index”: “tweets” } }

4、分词

一个 tokenizer(分词器)接收一个字符流,将之分割为独立的 tokens(词元,通常是独立 的单词),然后输出 tokens 流。 例如,whitespace tokenizer 遇到空白字符时分割文本。它会将文本 “Quick brown fox!” 分割 为 [Quick, brown, fox!]。 该 tokenizer(分词器)还负责记录各个 term(词条)的顺序或 position 位置(用于 phrase 短 语和 word proximity 词近邻查询),以及 term(词条)所代表的原始 word(单词)的 start (起始)和 end(结束)的 character offsets(字符偏移量)(用于高亮显示搜索的内容)。 Elasticsearch 提供了很多内置的分词器,可以用来构建 custom analyzers(自定义分词器)。

1)、安装 ik 分词器

注意:不能用默认 elasticsearch-plugin install xxx.zip 进行自动安装 https://github.com/medcl/elasticsearch-analysis-ik/releases?after=v6.4.2
对应 es 版本安装
进入 es 容器内部 plugins 目录
docker exec -it 容器 id /bin/bash wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.4.2/elasticsearch-anal ysis-ik-7.4.2.zip unzip
下载的文件 rm –rf *.zip mv elasticsearch/ ik 可以确认是否安装好了分词器
cd …/bin elasticsearch plugin list:即可列出系统的分词器

2)、测试分词器 使用默认

POST _analyze { “text”: “我是中国人” }
请观察结果 使用分词器
POST _analyze { “analyzer”: “ik_smart”, “text”: “我是中国人” }
请观察结果 另外一个分词器
ik_max_word POST _analyze { “analyzer”: “ik_max_word”, “text”: “我是中国人” }
请观察结果 能够看出不同的分词器,分词有明显的区别,所以以后定义一个索引不能再使用默 认的 mapping 了,要手工建立 mapping, 因为要选择分词器。

3)、自定义词库

修改/usr/share/elasticsearch/plugins/ik/config/中的 IKAnalyzer.cfg.xml
/usr/share/elasticsearch/plugins/ik/config

  <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> 
  <properties> 
  <comment>IK Analyzer 扩展配置</comment> 
  <!--用户可以在这里配置自己的扩展字典 --> 
  <entry key="ext_dict"></entry> 
  <!--用户可以在这里配置自己的扩展停止词字典--> 
  <entry key="ext_stopwords"></entry> 
  <!--用户可以在这里配置远程扩展字典 --> 
  <entry key="remote_ext_dict">**http://192.168.128.130/fenci/myword.txt**</entry> 
  <!--用户可以在这里配置远程扩展停止词字典--> 
  <!-- <entry key="remote_ext_stopwords">words_location</entry> --> 
  </properties> 

原来的 xml

  <?xml version="1.0" encoding="UTF-8"?>
   <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> 
   <properties>
    <comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 --> 
<entry key="ext_dict"></entry> 
<!--用户可以在这里配置自己的扩展停止词字典--> 
<entry key="ext_stopwords"></entry> 
<!--用户可以在这里配置远程扩展字典 -->
 <!-- <entry key="remote_ext_dict">words_location</entry> -->
  <!--用户可以在这里配置远程扩展停止词字典--> 
  <!-- <entry key="remote_ext_stopwords">words_location</entry> --> 
  </properties> 

按照加粗的路径利用 nginx 发布静态资源,按照请求路径,创建对应的文件夹以及文件,放在 nginx 的 html 下 然后重启 es 服务器,重启 nginx。
在 kibana 中测试分词效果 更新完成后,es 只会对新增的数据用新词分词。
历史数据是不会重新分词的。如果想要历 史数据重新分词。需要执行:
POST my_index/_update_by_query?conflicts=proceed

五、Elasticsearch-Rest-Client

1)、9300:TCP
 spring-data-elasticsearch:transport-api.jar;
 springboot 版本不同, transport-api.jar 不同,不能适配 es 版本
 7.x 已经不建议使用,8 以后就要废弃
2)、9200:HTTP
 JestClient:非官方,更新慢
 RestTemplate:模拟发 HTTP 请求,ES 很多操作需要自己封装,麻烦
 HttpClient:同上
 Elasticsearch-Rest-Client:官方 RestClient,封装了 ES 操作,API 层次分明,上手简单 最终选择 Elasticsearch-Rest-Client(elasticsearch-rest-high-level-client)
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html

1、SpringBoot 整合

<dependency>
	<groupId>org.elasticsearch.client</groupId> 
	<artifactId>elasticsearch-rest-high-level-client</artifactId> 
	<version>7.4.2</version> 
</dependency> 

2、配置

@Bean 
RestHighLevelClient client() { 
	RestClientBuilder builder = RestClient.builder(new HttpHost("192.168.56.10", 9200, "http")); 
	return new RestHighLevelClient(builder);
	 }

3、使用 参照官方文档:

@Test 
void test1() throws IOException { 
	Product product = new Product(); 
	product.setSpuName("华为"); 
	product.setId(10L); 
	IndexRequest request = new IndexRequest("product").id("20") .source("spuName","华为","id",20L); 
	try { 
	IndexResponse response = client.index(request, RequestOptions.DEFAULT); 
	System.out.println(request.toString());
	IndexResponse response2 = client.index(request, RequestOptions.DEFAULT);
	 } catch (ElasticsearchException e) {
	 	 if (e.status() == RestStatus.CONFLICT) {
	 	  } } 
	 	  }

六、附录-安装 nginx

 随便启动一个 nginx 实例,只是为了复制出配置
 docker run -p 80:80 --name nginx -d nginx:1.10
 将容器内的配置文件拷贝到当前目录:

 docker container cp nginx:/etc/nginx . 

 别忘了后面的点
 修改文件名称:

 mv nginx conf 

把这个 conf 移动到/mydata/nginx 下
 终止原容器:

 docker stop nginx 

 执行命令删除原容器:

 docker rm $ContainerId 

 创建新的 nginx;
执行以下命令

 docker run -p 80:80 --name nginx \ -v /mydata/nginx/html:/usr/share/nginx/html \ -v /mydata/nginx/logs:/var/log/nginx \ -v /mydata/nginx/conf:/etc/nginx \ -d nginx:1.10 

 给 nginx 的 html 下面放的所有资源可以直接访问;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值