
CNN卷积神经网络
文章平均质量分 92
球场书生
这个作者很懒,什么都没留下…
展开
-
CNN卷积神经网络之ConvNeXt
CNN卷积神经网络之ConvNeXt前言改进内容1 训练技巧2 宏观设计3 ResNeXt-ify4 Inverted Bottleneck5 Large Kernel Sizes67前言《A ConvNet for the 2020s》论文地址:https://arxiv.org/abs/2201.03545pytorch代码:https://github.com/facebookresearch/ConvNeXt最近Transfomer在CV领域大放异彩,颇有一种要碾压CNN的气势。但是作者觉原创 2022-02-18 16:50:13 · 7895 阅读 · 2 评论 -
CNN卷积神经网络之EfficientNet V2
CNN卷积神经网络之EfficientNet V2前言EfficientNetV1中存在的问题NAS 搜索网络结构前言《EfficientNetV2: Smaller Models and Faster Training》论文地址:https://arxiv.org/abs/2104.00298EfficientNetV2这篇文章是在2021年发布的,刚出来没多久我就看了,不过现在才有时间整理一下。EfficientNetV2在V1上做了一些改进,先看一下性能对比:(21k)表示是经过Image原创 2022-02-07 16:42:20 · 3666 阅读 · 0 评论 -
CNN卷积神经网络之RegNet
CNN卷积神经网络之RegNet前言设计思路AnyNet设计空间网络结构实验结果消融实验结论前言《Designing Network Design Spaces》论文地址:https://arxiv.org/pdf/2003.13678.pdf代码:https://github.com/facebookresearch/pycls何恺明团队在CVPR 2020上发布的论文,提出了RegNet。在相同的训练设计和FLOPs的条件下,RegNet的精度超越了之前最SOTA的EfficientNet,原创 2022-02-06 19:30:52 · 6125 阅读 · 0 评论 -
CNN卷积神经网络之Res2Net和Res2NetPlus
CNN卷积神经网络之Res2Net和Res2NetPlus前言Res2Net module集成Dimension cardinality和SE block实验结果Res2NetPlus前言《Res2Net: A New Multi-scale Backbone Architecture》论文地址:https://arxiv.org/pdf/1904.01169.pdf面向视觉任务的多尺度表示对于目标检测、语义分割和显著目标检测任务具有重大意义。通过CNN新模块Res2Net,能够实现与比以往优秀的原创 2022-02-06 13:15:30 · 3065 阅读 · 0 评论 -
CNN卷积神经网络之ResNeSt
CNN卷积神经网络之ResNeSt前言ResNeSt Block实验结果代码前言《ResNeSt: Split-Attention Networks》论文地址:https://arxiv.org/pdf/2004.08955.pdf这篇文章是李沐团队的投2020ECCV的,但是收到了strong reject。整个网络的性能还是很棒的,但是审稿人觉得创新性不够:“It more likes to combine ResNeXt-D and SKNet together and do not int原创 2022-02-05 22:25:30 · 2898 阅读 · 0 评论 -
CNN卷积神经网络之SKNet及代码
CNN卷积神经网络之SKNet及代码前言SK Convolution细节网络结构实验结果代码《Selective Kernel Networks》论文地址:https://arxiv.org/pdf/1903.06586.pdf前言CVPR2019 SKNet是SENet的加强版,是attention机制中的与SE同等地位的一个模块,可以方便地添加到现有的网络模型中,对分类问题,分割问题有一定的提升。如果不清楚SENet的,可以先看一下CNN卷积神经网络之SENetSK Convolution原创 2022-02-05 17:11:17 · 13787 阅读 · 21 评论 -
轻量级网络之CondenseNet
轻量级网络之CondenseNetCondenseNet: An Efficient DenseNet using Learned Group Convolutions2018CVPR的网络,文章的贡献从名字就能清晰明了的Get。利用可学习分组卷积,对DenseNet的进行轻量化改造。首先看一下是如何替换网络中的普通卷积:A是原来的卷积,在B中被替换成分组卷积,其中1x1的分组卷积是可以学习分组的;注意在1x1分组卷积前多插入了一层Permute,作者想要在DenseNet的卷积操作中引入group原创 2022-01-25 22:20:23 · 2385 阅读 · 0 评论 -
轻量级网络之GhostNet
轻量级网络之GhostNet前言动机Ghost模块G-bneckGhostNet网络结构实验性能消融实验Ghost模块 pytorch代码欢迎交流,禁止转载!!前言《GhostNet: More Features from Cheap Operations》论文地址:GhostNet: More Features from Cheap Operations来自华为诺亚方舟实验室,发表于2020年的CVPR上。提供了一个全新的Ghost模块,旨在通过廉价操作生成更多的特征图。该Ghost模块即插即用原创 2021-05-16 15:56:54 · 5146 阅读 · 0 评论 -
轻量级网络之MixNet
轻量级网络之MixNet前言卷积核尺寸MixConv消融实验MixNet网络结构性能总结欢迎交流,禁止转载!!前言《MixConv: Mixed Depthwise Convolutional Kernels》论文地址:https://arxiv.org/pdf/1907.09595.pdf2019年谷歌使用AutoML,推出的新网络MixNet。动机:深度可分离卷积在轻量级网络中越来越流行,但是都采用一样大小的深度可分离卷积核,卷积核的尺寸被忽略了。作者系统地研究了不同卷积核尺寸的影响,并且原创 2021-05-15 19:10:57 · 1003 阅读 · 1 评论 -
轻量级网络之MobileNet v3
轻量级网络之MobileNet v3前言手工改进部分网络结构实验对比前言《Searching for MobileNetV3》论文地址:https://arxiv.org/abs/1905.022442019年谷歌提出的,MobileNet V3本质上是对MnasNet的手工改进,下图是整个改进的过程:性能还是不错:以MnasNet-A1作为起点,使用NetAdapt对其进行优化(NetAdapt是一种算法,可自动简化预训练模型,直到达到给定的延迟,同时保持较高的准确性)。 除此以外,作者原创 2021-05-15 11:01:17 · 1333 阅读 · 0 评论 -
轻量级网络之ShuffleNet v2
轻量级网络之ShuffleNet v2及pytorch代码前言评价指标四个原则优化网络结构欢迎交流,禁止转载!!前言《ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design》论文地址:https://arxiv.org/pdf/1807.11164v1.pdf之前人们提出了很多轻量级的网络MobileNet V1 V2 和ShuffleNet V1等,但是可以发现参数量少≠运算速度快,这跟硬件以及计算方式有原创 2021-05-14 15:15:41 · 2352 阅读 · 4 评论 -
轻量级网络之ShuffleNet v1
轻量级网络之ShuffleNet v1前言ShuffleNet Units计算量网络结构实验对比Shuffle的具体实现小结前言《ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices》论文地址:https://arxiv.org/pdf/1707.01083.pdf这是旷世(Face++)2018年发表在了CVPR上的文章,ShuffleNet_v1在MobileNet_v1后,Mobil原创 2021-05-10 21:15:09 · 564 阅读 · 0 评论 -
轻量级网络之Xception
轻量化网络之Xception原创 2021-05-10 11:26:05 · 2028 阅读 · 0 评论 -
轻量级网络之MobileNet v2
轻量级网络之MobileNet v2前言Inverted ResidualsLinear Bottlenecks网络结构网络性能前言《MobileNetV2: Inverted Residuals and Linear Bottlenecks》论文地址:https://arxiv.org/pdf/1801.04381.pdfMobileNetV1是借鉴了VGG的结构,而MobileNetV2就借鉴了ResNet的结构。一些在MobileNet V1中介绍过的就不再V2中重复介绍了。从论文名字上,就原创 2021-05-10 09:04:03 · 701 阅读 · 1 评论 -
轻量级网络之MobileNet v1
轻量级网络之MobileNet v1前言深度可分离卷积 Depthwise Separable Convolution参数量计算量网络结构模型缩放模型性能前言《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Application》论文地址:https://arxiv.org/pdf/1704.04861.pdfMobileNet v1是2017年四月google推出的,通过设计模型结构来减少模型的参数。整个原创 2021-05-09 19:31:56 · 545 阅读 · 0 评论 -
轻量级网络之SqueezeNet
CNN卷积神经网络之SqueezeNet 轻量型网络前言压缩模型的优点压缩的策略网络结构Fire Module总体架构性能比较前言《SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH50X FEWER PARAMETERS AND <0.5MB MODEL SIZE》论文地址:https://arxiv.org/pdf/1602.07360.pdf从题目上来看就知道这篇文章的主要卖点了,与AlexNet比较,参数量减少了性能还能差不多。但是感觉有夸大的作用,因为原创 2021-05-09 19:30:54 · 645 阅读 · 0 评论 -
CNN卷积神经网络之DCN(Deformable Convolutional Networks、Deformable ConvNets v2)
可变形卷积网络Deformable ConvNets V1、V2前言一、Deformable Convolutional NetworksDeformable ConvolutionDeformable RoI PoolingPosition-Sensitive (PS) RoI Poolingoffset偏移学习实验效果思考二、Deformable ConvNets v2Stacking More Deformable Conv LayersModulated Deformable ModulesR-CN原创 2021-04-27 20:28:02 · 22418 阅读 · 0 评论 -
CNN卷积神经网络之EfficientNet
CNN卷积神经网络之EfficientNet前言设计方法和对比实验网络结构小结前言《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》论文地址:https://arxiv.org/pdf/1905.11946.pdf这是2019年的一篇炼丹的单方,给出了从深度、宽度、分辨率三个维度的设计方案。以往的网络设计通常是依靠提升一个方面来提升性能,而EfficientNet是三者复合的方式提升网络性能,在NAS搜原创 2021-04-24 19:18:49 · 1683 阅读 · 0 评论 -
Conv1d 2d 3d、空间可分离卷积Separable Conv、分组卷积Group Conv、深度可分离卷积Depthwise Separable Conv、空洞卷积、可变性卷积
CNN中各种卷积Convolution介绍1.Conv1d 2d 3d2.空间可分离卷积Separable convolution扁平卷积Flattened convolutions3.分组卷积Group Conv混合分组卷积Shuffled Grouped Convolution4.深度可分离卷积Depthwise Separable ConvDepthwise ConvolutionPointwise Convolution5.空洞卷积(扩张卷积)Dilated Convolutions6.反卷积(转置原创 2021-04-23 19:38:48 · 5488 阅读 · 0 评论 -
CNN卷积神经网络之ResNeXt
CNN卷积神经网络之ResNeXt前言前言《Aggregated Residual Transformations for Deep Neural Networks》论文地址:https://arxiv.org/abs/1611.054312017CVPR上的论文,ResNeXt是ResNet和Inception的结合体,因此你会觉得InceptionV4有些相似,但却更简洁。...原创 2021-04-20 16:41:45 · 1202 阅读 · 0 评论 -
CNN卷积神经网络之SENet及代码
CNN卷积神经网络之SENet未经本人同意,禁止任何形式的转载!一、前言二、SE block细节SE block的运用实例模型的复杂度三、消融实验1.降维系数r2.Squeeze操作3.Excitation操作4.不同的stages5.集成策略四、SE block作用的分析五、SENET-154的一些细节*未经本人同意,禁止任何形式的转载!一、前言《Squeeze-and-Excitation Networks》论文地址:https://arxiv.org/abs/1709.01507.SENe原创 2021-02-26 16:48:02 · 9142 阅读 · 1 评论 -
CNN卷积神经网络之DenseNet
CNN卷积神经网络之DenseNet前言网络结构结果总结分析未经本人同意,禁止任何形式的转载!前言《Densely Connected Convolutional Networks》论文地址:https://arxiv.org/abs/1608.06993.DenseNet当选了CVPR 2017年的Best Paper,受到ResNet和随机深度网络Deep networks with stochastic depth(随机地drop一些层,可以提高 ResNet 的泛化性能)的启发。1)神原创 2021-02-22 10:27:50 · 1069 阅读 · 0 评论 -
CNN卷积神经网络之Inception-v4,Inception-ResNet
CNN卷积神经网络之Inception-v4(Inception-ResNet)前言pandas是什么?二1.引入库总结未经本人同意,禁止任何形式的转载!前言《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》论文地址:https://arxiv.org/abs/1602.07261.在15年ResNet 提出后,2016年Inception汲取ResNet 的优势,推出了Incep原创 2021-02-21 16:34:10 · 2269 阅读 · 1 评论 -
CNN卷积神经网络之ResNet
CNN卷积神经网络之ResNet前言神经网络的“退化”问题残差块(Residual Block)网络结构Residual Block的分析与改进*理解与反思未经本人同意,禁止任何形式的转载!前言《Deep Residual Learning for Image Recognition》论文地址:https://arxiv.org/pdf/1512.03385.pdf.2014年VGG达到19层,GoogLeNet达到22层,就算是15年Incepetion V2 42层,V3 44层,但res原创 2021-02-20 20:14:30 · 1627 阅读 · 0 评论 -
CNN卷积神经网络之GoogLeNet(Incepetion V1-Incepetion V3)
CNN卷积神经网络之GoogLeNet(Incepetion V1-V3)GoogLeNet(Incepetion V1)前言网络结构1.Inception module2.整体结构运用的方法1.2.Incepetion V2网络结构运用的方法1.2.Incepetion V3网络结构运用的方法1.2.总结GoogLeNet(Incepetion V1)《Going deeper with convolutions》论文地址:http://arxiv.org/abs/1409.4842.前言Go原创 2021-02-19 21:37:20 · 2976 阅读 · 5 评论 -
CNN卷积神经网络之VGGNet
CNN卷积神经网络之VGGNet前言网络结构运用的方法1.多尺度训练2.稠密和多裁剪图像评估对比3.小卷积核和连续的卷积层*4.dropout5.尺寸大小和通道数总结前言《Very Deep Convolutional Networks for Large-Scale Image Recognition》论文地址: https://arxiv.org/abs/1409.1556.该网络是在ILSVRC 2014上的相关工作,ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet),2原创 2021-02-16 22:57:27 · 2357 阅读 · 3 评论 -
CNN卷积神经网络之ZFNet与OverFeat
CNN卷积神经网络之ZFNet与OverFeat前言一、ZFNet网络结构反卷积可视化1.反最大池化(Max Unpooling)2.ReLu激活3.反卷积二、OverFeat1.引入库2.读入数据总结前言这两个网络都是在13年提出的,都是在AlexNet上稍微改进的,所以就写在了一起,也方便对比。一、ZFNet《Visualizing and Understanding Convolutional Networks 》论文地址:https://arxiv.org/pdf/1311.2901.原创 2021-02-14 16:12:58 · 700 阅读 · 0 评论 -
CNN卷积神经网络之AlexNet
CNN卷积神经网络之AlexNet前言网络结构运用的方法1.ReLU非线性单元激活函数2.在多个GPU上训练3.局部响应归一化4.重叠池化5.数据增强(防止过拟合)6.Dropout(防止过拟合)7.训练策略8.初始化代码前言《ImageNet Classification with Deep Convolutional Neural Networks》作者:Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton地址:https://papers.n原创 2021-02-07 19:38:02 · 1011 阅读 · 1 评论