torch模型转换为tflite模型

本文介绍了如何将PyTorch模型转换为ONNX格式,包括可能需要的节点删除和裁剪操作。在验证ONNX模型的正确性后,进一步将其转化为TensorFlow的PB模型,并最终转换为轻量级的TFLite模型,适用于深度学习的移动端部署。
摘要由CSDN通过智能技术生成

pytorch to onnx

import torch
import numpy as np
import sys
from torchsummary import summary
sys.path.append('.')
import logging.config
logging.config.fileConfig("config/logging.conf")
logger = logging.getLogger('api')

from core.model_loader.face_recognition.FaceRecModelLoader import FaceRecModelLoader
from core.model_handler.face_recognition.FaceRecModelHandler import FaceRecModelHandler

if __name__ == '__main__':
    # img = np.random.randint(0, 255, size=(112,112,3), dtype=np.uint8)
    # img = img[:,:,::-1].astype(np.float32)
    # img = (img.transpose((2, 0, 1)) - 127.5) * 0.0078125
    # img = torch.from_numpy(img).unsqueeze(0).float().cuda()

    img = torch.randn(1,3,112,112).cuda()
    save_path = "models.onnx"
    
    model  = torch.load('models.pkl')
    
    model.eval()
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值