Python数据分析案例四: USDA食品数据库

一:介绍
该案例来自《利用Python进行数据分析·第2版》,分析的对象是美国农业部(USDA)制作的一份有关食物营养信息的数据库。
二:分析流程
1:读取数据:

import json
import pandas as pd
db = json.load(open('C:/Users/17322/Desktop/datasets/usda_food/database.json' ))

2:汇总nutrients项:
数据集里每项是某种食物的全部数据,其key:nutrients是一个字典列表,里面每个字典对应某种营养成分

nutrients_test = pd.DataFrame(db[-1]['nutrients'])
nutrients_test

在这里插入图片描述
借由以下代码将前1000项食物的nutrients汇总起来(整个数据集太大,笔记本无法处理,所以我只选取前1000)

nutrients = pd.DataFrame(db[0]['nutrients'])
nutrients['id'] = 1008
for i in range(1,1000):
    nutrient_i = pd.DataFrame(db[i]['nutrients'])
    nutrient_i['id'] = i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值