题目链接
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
Input
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
Output
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
解题思路
这是个莫队的板子题,然后需要注意的就是在统计now的时候,我就是用最最朴素的算法写的,直接用组合数学的公式展开写的。
可能我的莫队优化学的不是很好吧… … 感觉莫队跑的好慢啊… … …
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
const int maxn=5e4+7;
int belong[maxn],a[maxn],n,m,block,num;
long long now,cnt[maxn],ans[maxn];
struct node
{
int id;
long long l,r;
};
node e[maxn];
void Blocking()
{
block=sqrt(n);
num=n/block;
if(n%block)
num++;
for(int i=1; i<=n; i++)
belong[i]=(i-1)/block+1;
}
int cmp(node x,node y)
{
return ((belong[x.l]^belong[y.l])?belong[x.l]<belong[y.l]:((belong[x.l]&1)?x.r<y.r:x.r>y.r));
}
int cmp1(node x,node y)
{
return x.id<y.id;
}
int main()
{
now=0;
scanf("%d %d",&n,&m);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
for(int i=1; i<=m; i++)
{
scanf("%lld %lld",&e[i].l,&e[i].r);
e[i].id=i;
}
Blocking();
sort(e+1,e+1+m,cmp);
int l=1,r=0;
for(int i=1; i<=m; i++)
{
int ql=e[i].l,qr=e[i].r;
while(l<ql)
{
--cnt[a[l]];
now=now-((cnt[a[l]]+1)*(cnt[a[l]])/2)+(cnt[a[l]]*(cnt[a[l]]-1)/2);
l++;
}
while(l>ql)
{
--l;
now=now-((cnt[a[l]]-1)*(cnt[a[l]])/2)+(cnt[a[l]]*(cnt[a[l]]+1)/2);
++cnt[a[l]];
}
while(r<qr)
{
++r;
now=now=now-((cnt[a[r]]-1)*(cnt[a[r]])/2)+(cnt[a[r]]*(cnt[a[r]]+1)/2);
++cnt[a[r]];
}
while(r>qr)
{
--cnt[a[r]];
now=now-((cnt[a[r]]+1)*(cnt[a[r]])/2)+(cnt[a[r]]*(cnt[a[r]]-1)/2);
r--;
}
ans[e[i].id]=now;
}
sort(e+1,e+1+m,cmp1);
for(int i=1; i<=m; i++)
{
long long ll=e[i].l,rr=e[i].r,res=ans[i];
long long k1=(rr-ll+1);
if(res==0)
printf("0/1\n");
else
{
k1=k1*(k1-1)/2;
long long k=__gcd(k1,res);//化简
printf("%lld/%lld\n",res/k,k1/k);
}
}
return 0;
}