qq_37534947的博客

私信 关注
qq_37534947
码龄4年

-

  • 15,350
    被访问量
  • 90
    原创文章
  • 80,360
    作者排名
  • 34
    粉丝数量
  • 于 2017-02-15 加入CSDN
获得成就
  • 获得29次点赞
  • 内容获得50次评论
  • 获得106次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #机器学习
TA的专栏
  • 算法
    18篇
  • tensorflow
    1篇
  • tensorflow_ubutun
    4篇
  • 其他
    5篇
  • linux/centos
    2篇
  • 论文学习
    4篇
  • 线性代数
    7篇
  • 深度学习
    10篇
  • 深度学习实验
    6篇
  • 滤波
    1篇
  • 其他数学知识
    1篇
  • 概率论
    6篇
  • 最优化
    2篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

加班刷题-----栈模块(java)---简单题

文章目录栈一:20. 有效的括号----2021/3/1二:1502. 判断能否形成等差数列----2021/2/17三:1122. 数组的相对排序----2021/2/17四:976. 三角形的最大周长----2021/2/17五:面试题 05.01. 插入----2021/2/8六:371. 两整数之和----2021/2/8七:136. 只出现一次的数字----2021/2/8八:191. 位1的个数----2021/2/8九:389. 找不同----2021/2/8十:1290. 二进制链表转整数-
原创
2阅读
0评论
0点赞
发布博客于 6 小时前

加班刷题-----分治法模块(java)---简单题

文章目录一:剑指 Offer 53 - II. 0~n-1中缺失的数字----2021/2/26二:面试题 10.05. 稀疏数组搜索---2021/2/26三:350. 两个数组的交集 II----2021/2/26四:69. x 的平方根----2021/2/26五:剑指 Offer 11. 旋转数组的最小数字----2021/2/27六:167. 两数之和 II - 输入有序数组----2021/2/27七:441. 排列硬币---2021/2/27八:1337. 矩阵中战斗力最弱的 K 行----2
原创
4阅读
0评论
0点赞
发布博客于 昨天

加班刷题-----二分查找模块(java)---简单题

文章目录二分查找一:590. N叉树的后序遍历----2021/2/20二:1022. 从根到叶的二进制数之和---2021/2/21三:剑指 Offer 54. 二叉搜索树的第k大节点----2021/2/21四:1038. 把二叉搜索树转换为累加树----2021/2/19五:113. 路径总和 II----2021/2/19六:513. 找树左下角的值----2021/2/19七:面试题 04.06. 后继者---2021/2/20八:690. 员工的重要性----2021/2/17九:100. 相同
原创
10阅读
0评论
0点赞
发布博客于 3 天前

加班刷题-----并查集模块(java)---中等题

文章目录并查集1 .并查集的构造二.数组以树的形式实现三.代码实现四.压缩路径五、优化后的代码一:590. N叉树的后序遍历----2021/2/20二:1022. 从根到叶的二进制数之和---2021/2/21三:剑指 Offer 54. 二叉搜索树的第k大节点----2021/2/21四:1038. 把二叉搜索树转换为累加树----2021/2/19五:113. 路径总和 II----2021/2/19六:513. 找树左下角的值----2021/2/19七:面试题 04.06. 后继者---2021/
原创
17阅读
0评论
0点赞
发布博客于 5 天前

加班刷题-----链表模块(java)---简单题

文章目录一:590. N叉树的后序遍历----2021/2/20二:1022. 从根到叶的二进制数之和---2021/2/21三:剑指 Offer 54. 二叉搜索树的第k大节点----2021/2/21四:1038. 把二叉搜索树转换为累加树----2021/2/19五:113. 路径总和 II----2021/2/19六:513. 找树左下角的值----2021/2/19七:面试题 04.06. 后继者---2021/2/20八:690. 员工的重要性----2021/2/17九:100. 相同的树--
原创
12阅读
0评论
0点赞
发布博客于 8 天前

加班刷题-----bfs模块(java)---中等题

文章目录层次遍历的理解+实现(java)一:107. 二叉树的层序遍历 II----2021/2/19二:101. 对称二叉树----2021/2/20三:剑指 Offer 32 - II. 从上到下打印二叉树 II----2021/2/20四:993. 二叉树的堂兄弟节点----2021/2/20层次遍历的理解+实现(java) public static void level(BTNode node) { ArrayDeque<BTNode> queue = new A
原创
12阅读
0评论
0点赞
发布博客于 8 天前

加班刷题-----树模块(java)---简单题

文章目录一:面试题 16.19. 水域大小----2021/2/17二:547. 省份数量---2021/2/18三:129. 求根到叶子节点数字之和----2021/2/19四:1038. 把二叉搜索树转换为累加树----2021/2/19五:113. 路径总和 II----2021/2/19六:513. 找树左下角的值----2021/2/19七:面试题 04.06. 后继者---2021/2/20八:690. 员工的重要性----2021/2/17九:100. 相同的树----2021/2/17十:面
原创
17阅读
0评论
0点赞
发布博客于 9 天前

加班刷题-----bfs模块(java)---简单题

文章目录一:面试题 04.04. 检查平衡性----2021/2/16二:872. 叶子相似的树----2021/2/16三:257. 二叉树的所有路径----2021/2/16四:剑指 Offer 55 - I. 二叉树的深度----2021/2/16五:108. 将有序数组转换为二叉搜索树----2021/2/16六:112. 路径总和----2021/2/17七:剑指 Offer 55 - II. 平衡二叉树---2021/2/17八:690. 员工的重要性----2021/2/17九:100. 相同
原创
13阅读
0评论
0点赞
发布博客于 10 天前

加班刷题-----排序模块(java)---简单题

文章目录一:1528. 重新排列字符串----2021/2/7二:1720. 解码异或后的数组----2021/2/7三:231. 2的幂----2021/2/8四:1486. 数组异或操作----2021/2/8五:面试题 05.01. 插入----2021/2/8六:371. 两整数之和----2021/2/8七:136. 只出现一次的数字----2021/2/8八:191. 位1的个数----2021/2/8九:389. 找不同----2021/2/8十:1290. 二进制链表转整数----2021/
原创
5阅读
0评论
0点赞
发布博客于 12 天前

加班刷题-----dfs模块(java)---中等题

文章目录dfs和回溯的理解层次遍历的理解+实现(java)前序遍历、后序遍历、中序遍历、遍历一:面试题 04.04. 检查平衡性----2021/2/16二:872. 叶子相似的树----2021/2/16三:257. 二叉树的所有路径----2021/2/16四:剑指 Offer 55 - I. 二叉树的深度----2021/2/16五:108. 将有序数组转换为二叉搜索树----2021/2/16六:112. 路径总和----2021/2/17七:剑指 Offer 55 - II. 平衡二叉树---20
原创
17阅读
0评论
0点赞
发布博客于 12 天前

加班刷题-----dfs模块(java)---简单题

文章目录dfs和回溯的理解层次遍历的理解+实现(java)一:面试题 04.04. 检查平衡性----2021/2/16二:872. 叶子相似的树----2021/2/16三:257. 二叉树的所有路径----2021/2/16四:剑指 Offer 55 - I. 二叉树的深度----2021/2/16五:108. 将有序数组转换为二叉搜索树----2021/2/16dfs和回溯的理解注: 回溯其实就是带有剪枝的深度优先搜索,而深度优先搜索/dfs更加强调了数据结构(树或者图),在实现上回溯可以套
原创
44阅读
0评论
0点赞
发布博客于 13 天前

加班刷题-----位运算模块(java)---简单题

文章目录位运算知识点1、 位运算起源2、 位运算详解3、一些技巧一:268. 丢失的数字----2021/2/7方法一:数学求和方法二:异或二:1720. 解码异或后的数组----2021/2/7位运算知识点1、 位运算起源位运算起源于C语言的低级操作,Java的设计初衷是嵌入到电视机顶盒内,所以这种低级操作方式被保留下来。所谓的低级操作,是因为位运算的操作对象是二进制位,但是这种低级操作对计算机而言是非常简单直接,友好高效的。在简单的低成本处理器上,通常位运算比除法快得多,比乘法快几倍,有时比加
原创
26阅读
1评论
0点赞
发布博客于 22 天前

加班刷题-----回溯模块(java)---中等题

文章目录一:357. 计算各个位数不同的数字个数----2021/1/31一:357. 计算各个位数不同的数字个数----2021/1/31class Solution { int count = 1; int sum; Set<Integer> set = new HashSet<Integer>(); public int countNumbersWithUniqueDigits(int n) { if(n==0)
原创
22阅读
0评论
0点赞
发布博客于 29 天前

加班刷题-----回溯模块(java)---简单题

文章目录一.1688. 比赛中的配对次数----2021/1/30二.401. 二进制手表----2021/1/30一.1688. 比赛中的配对次数----2021/1/30class Solution { int count = 0; public int numberOfMatches(int n) { dfs(n); return count; } public void dfs(int n){ if(n==1)
原创
14阅读
0评论
0点赞
发布博客于 2 月前

tensorflow常用命令

https://blog.csdn.net/jeffery0207/article/details/79842611
原创
78阅读
0评论
0点赞
发布博客于 2 月前

PointNet++等3D点云中用到的.cu、.cpp文件的编译的简单理解

文章目录1:cuda-c2:一个简单的配置流程3:.cu、.cpp的关系4:混合编译.cu、.cpp5:NVCC学习笔记6:g++的一些常用命令1:cuda-cCuda-c 极大程度的方便了我们利用GPU并行处理来加快自己程序的运行速度,但是大多情况下我们的程序是一个极为庞大的工程项目,在这个项目中我们只需要利用cuda来加快其中某一块算法的运行效率,所以很多情况下利用cpp文件来调用cu中的kernel函数,从而完成程序的并行运算。虽然cuda5.0之后可以直接从vs中生成现有的cuda项目,但是
原创
22阅读
0评论
0点赞
发布博客于 2 月前

加班刷题-----数组模块(java)---中等题

文章目录
原创
13阅读
0评论
0点赞
发布博客于 2 月前

可变形卷积 Deformable Convolution的简单理解

可变形卷积 Deformable Convolution:分析步骤:1)如下图,先经过一个普通的卷积学习到每个每个特征点的位置偏移量dx和dy,所以大小变为(bhw*2c)2)然后就是用原图的特征和偏移量相加,得到偏移后的位置—大多数情况为小数。所以取值就不能直接取(当然偏移后位置不能越界)。3)因为偏移后可能为小数,所以需要双线性插值法来计算在此位置的值,插值法见后面,就是偏移后的位置和每个特征值(窗口大小)的位置做线性差值的累加和,其中要保证每个特征值的作用是小于1的,这种方法可以参照下边缘检
原创
38阅读
0评论
0点赞
发布博客于 2 月前

加班刷题-----数组模块(java)---简单题

文章目录一.867. 转置矩阵----2021/1/11二:面试题 17.10. 主要元素----2021/1/11一.867. 转置矩阵----2021/1/11class Solution { public int[][] transpose(int[][] A) { int[][] B = new int[A[0].length][A.length]; for(int i = 0;i<A.length;i++){ for(
原创
16阅读
1评论
0点赞
发布博客于 2 月前

加班刷题-----递归模块(java)---中等题

文章目录待待
原创
60阅读
1评论
0点赞
发布博客于 2 月前

加班刷题-----递归模块(java)---简单题

文章目录1.剑指 Offer 10- I. 斐波那契数列----2021/1/8解法1-----递归解法2----动态规划1.剑指 Offer 10- I. 斐波那契数列----2021/1/8解法1-----递归class Solution { int constant = 1000000007; public int fib(int n) { if(n==0){ return 0; } if(n==1){
原创
47阅读
3评论
2点赞
发布博客于 2 月前

Windows系统下Anaconda安装pytorch与temsorflow(cpu版本)

文章目录1:Anaconda创建虚拟环境2:配置conda镜像3:Anaconda安装pytorch4:conda基本命令1:Anaconda创建虚拟环境新建一个虚拟环境,因为自带的3.7版本的python不稳定,并且可以之后根据不同的需求单独使用不同的环境(有着不同的包)。首先在anaconda的文件夹下创建你的虚拟环境名,如:cmd打开命令行:conda create -n pytorch python=3.6或者conda create -n pytorch python=3.6
原创
26阅读
0评论
0点赞
发布博客于 2 月前

Windows系统下Anaconda安装与使用

文章目录1:Anaconda是什么2:下载anaconda33:测试是否安装成功1:Anaconda是什么Anaconda是Python的包管理器和环境管理器。(1) Anaconda附带了一大批常用数据科学包,它附带了conda、pandas等150 多个科学包及其依赖项,因此可以用Anaconda立即开始处理数据。(2) 管理包。Anaconda 是在 conda(一个包管理器和环境管理器)上发展出来,在数据分析中,用到很多第三方的包,而conda可以很好的在计算机上安装和管理这些包,包括安
原创
25阅读
0评论
0点赞
发布博客于 2 月前

windows重装系统简易版--不需要u盘

文章目录1:下载原版win10光盘映像文件2:顺利进入安装向导,检查安装环境3.为了加快安装进度,建议不更新,如需要以后再进行设置4.选择自己需要安装的版本(一般为专业版)5.强迫接受的许可条款6.看个人需要选择是否保留个人文件安装7.确认无误后选择”安装”8.开始安装系统,期间会进行多次的重启,请耐心等待9.国家默认即可10.可选择微软拼音或微软五笔输入法11.后面看自己的选择了就不多说了!12.最后,成功1:下载原版win10光盘映像文件链接:https://pan.baidu.com/s/
原创
36阅读
0评论
0点赞
发布博客于 2 月前

腾讯云centos7安装jdk1.8

文章目录1:配置yum源2:搜索jdk安装包3.安装jdk1.84.配置环境5.验证是否安装成功1:配置yum源在 https://dev.mysql.com/downloads/repo/yum/ ,找到 yum 源 的rpm 安装包,进行安装,因为我是租用的腾讯云,其包含了yum,所以就不在叙述。2:搜索jdk安装包# yum search java|grep jdk3.安装jdk1.8# yum install java-1.8.0-openjdk注:下载之后默认的目录为:
原创
116阅读
6评论
0点赞
发布博客于 2 月前

腾讯云centos7安装mysql5.7,并开启3306端口

文章目录一:配置yum源二:安装 mysql 源3.安装Mysql4.启动 MySQL 服务5.设置开机启动6.修改root本地密码7.Mysql在腾讯云查看3306端口1.如上图,则说明默认被127.0.0.1占用。2.如果什么都没有,则无需以上操作(因为我的服务器是新租用的,所以什么都没有)8.Mysql在腾讯云开启3306端口一:配置yum源在 https://dev.mysql.com/downloads/repo/yum/ ,找到 yum 源 的rpm 安装包,进行安装,因为我是租用的腾讯
原创
85阅读
0评论
0点赞
发布博客于 2 月前

PointCNN: Convolution On X-Transformed Points

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation一:摘要二:介绍三:相关工作四:PointCNN五:实验六:结论七:补充一:摘要二:介绍三:相关工作分别比较:优劣:优劣:优劣:四:PointCNN五:实验六:结论七:补充分类训练结构:...
原创
34阅读
0评论
0点赞
发布博客于 2 月前

角点检测汇总

https://www.cnblogs.com/ronny/p/4009425.htmlhttps://senitco.github.io/2017/06/18/image-feature-harris/https://littletomatodonkey.github.io/2018/12/09/2018-12-09-harris%E8%A7%92%E7%82%B9%E6%A3%80%E6%B5%8B/
原创
16阅读
0评论
0点赞
发布博客于 2 月前

边缘检测汇总

简书–总:https://www.jianshu.com/p/ff4c1a6a68d8https://www.jianshu.com/p/effb2371ea12csdn-总:https://blog.csdn.net/qq_44736333/article/details/109152380霍夫变换:https://blog.csdn.net/zhu_hongji/article/details/81632611python:np.arctannp.arctan2np.filp..
原创
21阅读
0评论
0点赞
发布博客于 2 月前

半正定矩阵和正定矩阵的一些理解和补充

文章目录一:半正定矩阵二:正定矩阵3.直观理解正定、半正定矩阵一:半正定矩阵设A是实对称矩阵。如果对任意的实非零列向量x有xTAx≥0,就称A为半正定矩阵。        等价条件:                   &nbs
原创
82阅读
0评论
0点赞
发布博客于 2 月前

L1、L2范数理解--Ridge以及Lasso回归

文章目录一:范数对比二:范数作用三:L0范数和L1范数之间的比较四:L1范数和L2范数的比较五:L1范数和L2范数之反向传播的理解一:范数对比L0范数: 指向量中非0的元素的个数。(L0范数很难优化求解)L1范数: 指向量中各个元素绝对值之和L2范数: 指向量各元素的平方和然后求平方根注: L0范数,指向量中非零元素的个数。无穷范数,指向量中所有元素的最大绝对值。二:范数作用L1范数: 可以进行特征选择,即让特征的系数变为0.L2范数: 可以防止过拟合,提升模型的泛化能力,有助于处理
原创
90阅读
0评论
0点赞
发布博客于 2 月前

pytorch实现RNN实验.rar

参考链接:https://blog.csdn.net/qq_37534947/article/details/110442147,包含手动是实现RNN、pytorch实现RNN、LSTM、GRU。
rar
发布资源于 3 月前

pytorch实现循环神经网络实验

一:手写循环神经网络的实现实验: 手动实现循环神经网络RNN,并从至少一个数据集上进行实验,这里我选取了高速公路传感器数据PEMS04(后面的实验都是用的高速公路传感器数据),主要根据数据集的大小以及特征维度,手动实现循环神经网络,包括输入层、隐藏层、输出层,其中注意的是下一层的输入是本身和上一层的隐藏层的同时输入,最后的RNN的返回值为最后一步的隐藏状态,以及每一步的输出状态。实验目的: 利用手动实现的循环神经网络RNN,利用高速公路车流量数据集,学习回归模型,使得该模型可以很好的根据历史的车流量数据
原创
100阅读
2评论
1点赞
发布博客于 3 月前

PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation一:摘要二:介绍三:问题陈述四:方法五:实验六:实验七:结论一:摘要二:介绍三:问题陈述四:方法五:实验六:实验七:结论...
原创
20阅读
0评论
0点赞
发布博客于 3 月前

常见滤波(高斯滤波、均值滤波等)的简单理解

高斯滤波:高斯滤波对图像邻域内像素进行平滑时,邻域内不同位置的像素被赋予不同的权值,对图像进行平滑的同时,同时能够更多的保留图像的总体灰度分布特征。高斯滤波手动实现代码:# -*- coding: utf-8 -*-"""Created on Sat Jul 11 14:53:28 2020@author: 陨星落云"""import imageioimport numpy as npdef GaussianFilter(img): h,w,c = img.shap
原创
218阅读
0评论
0点赞
发布博客于 3 月前

空洞卷积+残差网络.rar

博客见:https://blog.csdn.net/qq_37534947/article/details/109727232,主要是空洞卷积以及残差网络的代码实现,包含数据集,框架是pytorch
rar
发布资源于 3 月前

pytorch实现空洞卷积+残差网络实验(torch实现)

一:pytorch实现空洞卷积实验(torch实现)要求:从至少一个数据集上进行实验,同理,这里我选取了车辆分类数据集(后面的实验都是用的车辆分类数据集),主要在之前利用torch.nn实现二维卷积的基础上,为解决感受野比较的问题,将普通的卷积修改为空洞卷积,并且卷几率符合HDC条件(这里我选取了1,2,5),并且堆叠了2层HDC,即一共六层卷积层。实验过程:注:所谓的空洞卷积,与https://blog.csdn.net/qq_37534947/article/details/109726153的
原创
249阅读
3评论
1点赞
发布博客于 3 月前

AlexNet -Pytorch代码实现+数据集.rar

博客见:https://blog.csdn.net/qq_37534947/article/details/109726574,主要是AlexNet网络的pytorch版本的代码实现,因为其网络本身过大,修改了其内部的大小。
rar
发布资源于 3 月前

Pytorch实现经典模型AlexNet模型

一:Pytorch实现经典模型AlexNet模型要求:使用pytorch实现经典的分类模型AlexNet,这里主要因为没有GPU环境,而其完整参数达到了6000万个,所以如ppt要求,在该模型的基础架构上,修改卷积核的大小以及卷积操作的步长等来模拟实现。实验设计:实验过程:注:这里主要介绍一下AlexNet模型的定义,其中因为参数量过大,以及图片的输入大小变为了64*64,所以对于每层的卷积核大小以及步长等做了相关变化。1.1AlexNet模型定义1. # 定义神经网络 2. cl
原创
65阅读
0评论
1点赞
发布博客于 3 月前

卷积网络代码+数据集.rar

博客见:https://blog.csdn.net/qq_37534947/article/details/109726153 主要是卷积网络的手写以及torch实现的代码,包含数据集!
rar
发布资源于 3 月前

pytorch实现卷积神经网络实验

一:手写二维卷积的实现要求:手写二维卷积的实现,并从至少一个数据集上进行实验,这里我选取了车辆分类数据集(后面的实验都是用的车辆分类数据集),主要根据数据集的大小,手动定义二维卷积操作,如:自定义单通道卷积、自定义多通道卷积、自定义卷积层等。实验过程:1.1相关包的导入1. import torch 2. import numpy as np 3. import random 4. from IPython import display 5. from matplotlib imp
原创
83阅读
0评论
1点赞
发布博客于 3 月前

数学知识补充(一)度量空间

文章目录一:度量空间1.1定义1.2更多细节二:欧几里得度量空间2.1定义2.2理解三:其他度量空间--待一:度量空间1.1定义1.2更多细节https://zh.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%97%B4二:欧几里得度量空间2.1定义2.2理解三:其他度量空间–待参考链接:https://www.zhihu.com/question/27903807...
原创
17阅读
0评论
0点赞
发布博客于 3 月前

线性代数(七)对称矩阵和二次型

文章目录一:对称矩阵的对角化1.1定义1.2对称矩阵对角化1.3正交对角化1.4谱定理1.5谱分解二:二次型2.1定义2.2例子2.3二次型的变量代换2.4主轴定理2.5二次型分类2.6特征值和二次型分类三:奇异值分解一:对称矩阵的对角化1.1定义注:对于对角化可以参照,https://blog.csdn.net/qq_37534947/article/details/1096203781.2对称矩阵对角化注:对于之前对角化,P应该是列向量是A的线性无关的特征向量,这里说明了当矩阵A是
原创
25阅读
0评论
0点赞
发布博客于 3 月前

线性代数(六)正交性

文章目录一:内积、长度、正交性1.1内积1.2长度1.3正交向量1.4总结二:正交集2.1定义2.2定理--正交基2.3正交投影2.4单位正交集三:正交矩阵3.1单位正交列向量3.2性质3.3正交矩阵初入门四:拉格姆-施密特方法4.1定义4.2步骤4.3例子4.4QR分解一:内积、长度、正交性1.1内积1.定义:2.定理:注:从上面的性质可以简单总结出其是符合“对加法、对乘法封闭的”。1.2长度1.定义:2.单位向量3.n维空间的距离1.3正交向量注:补充定理
原创
32阅读
0评论
0点赞
发布博客于 3 月前

登录注册常用模板.rar

包含背景、5个登录注册、后台(x-admin)、图片切换等多个常见的html页面,css以及相关的js!
rar
发布资源于 3 月前

syslinux-6.03.rar

rufus系统盘制作的时候,装系统找不到ldlinux.bss和ldlinux.sys的问题,包含ldlinux.bss和ldlinux.sys文件!!!
rar
发布资源于 3 月前

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation一:摘要二:介绍三:相关工作四:问题陈述五:点集上的深度学习六:实验七:结论一:摘要二:介绍三:相关工作四:问题陈述五:点集上的深度学习六:实验七:结论...
原创
24阅读
0评论
0点赞
发布博客于 3 月前

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation注:注:注:注:注:注:注:注:注:详细参考:
原创
26阅读
0评论
0点赞
发布博客于 3 月前

线性代数(五)特征值和特征向量

文章目录一:特征值与特征向量二:特征方程2.1行列式求解的另一种方法--初等变换2.2可逆矩阵定理以及行列式性质的补充2.3特征方程![在这里插入图片描述](https://img-blog.csdnimg.cn/20201111151913734.png#pic_center)2.4相似性三:对角化一:特征值与特征向量1.定义:注:必须是方阵!!!2.给定特征值求特征向量:注:已知特征值,可利用行化简求特征向量,即此时的齐次方程有无穷解则有特征向量,即一个特征值对应多个特征向量。
原创
55阅读
0评论
0点赞
发布博客于 3 月前

最优化理论(二)拉格朗日乘子法

文章目录一:无约束条件二:等式约束条件引入:优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题)一:无约束条件这是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证即可。二:等式约束条件这种方法可以将一个有n个变量与k个约束条件的最优化问题转换为一个解有n + k个变量的方程组的解的问题。这种方法中引入了一个或一组新的未知数,即拉格朗日乘数,又称拉格朗日
原创
48阅读
0评论
0点赞
发布博客于 3 月前

最优化理论(一)梯度直观理解

文章目录一:全导数二:方向导数三:梯度3.1为什么所有方向导数中会存在并且只存在一个最大值?3.2 这个最大值在哪个方向取得?值是多少?四:如何直观形象的理解方向导数与梯度以及它们之间的关系?五:总结一:全导数参考:https://www.zhihu.com/question/26966355/answer/154857139,直接看后面的评论,前面的太复杂了,有能力的可以看看!!二:方向导数三:梯度引出梯度:是一个矢量,其方向上的方向导数最大,其大小正好是此最大方向导数。
原创
33阅读
0评论
0点赞
发布博客于 3 月前

概率论笔记(六)一维正态分布/二维正态分布/多维正态分布

文章目录一:一维正态分布二:二维正态分布/多维正态分布三:各向同性正态分布一:一维正态分布二:二维正态分布/多维正态分布三:各向同性正态分布各向同性的高斯分布(球形高斯分布)指的是各个方向方差都一样的多维高斯分布,协方差为正实数与identity matrix(单位矩阵)相乘。注:即方差都是一样的,均值不一样,方差的值可以单独用标量表示。参考链接:https://www.cnblogs.com/jiangkejie/p/12939776.htmlhttps://blog.cs
原创
187阅读
0评论
0点赞
发布博客于 3 月前

概率论笔记(五)随机向量/多元随机变量

文章目录一:联合分布1.1联合分布函数1.2二维离散型随机向量及其联合分布列1.3二维连续型随机向量及其联合密度函数二:边缘分布与随机变量的独立性2.1边缘分布2.2随机变量的独立性2.3两个随机变量下的函数的分布2.3.1离散型2.3.2连续型一:联合分布引入:1.1联合分布函数注:相比于一维的分布函数,其增加了一维空间,成了二维空间,测试整体的二维空间变成了整体的1;之后同样是概率的累计。1.2二维离散型随机向量及其联合分布列1.3二维连续型随机向量及其联合密度函数性
原创
89阅读
0评论
0点赞
发布博客于 3 月前

概率论笔记(四)概率分布的下期望和方差的公式总结

文章目录一:伯努利分布/0-1分布二:二项分布三:泊松分布四:正态分布五:均匀分布六:指数分布一:伯努利分布/0-1分布如果随机试验仅有两个可能的结果,那么这两个结果可以用0和1表示,此时随机变量X将是一个0/1的变量,其分布是单个二值随机变量的分布,称为伯努利分布。注意伯努利分布关注的是结果只有0和1,而不管观测条件是什么。推导过程:注:就是一次实验下的结果。不是0就是1.二:二项分布本质: 就是n次实验下的伯努利分布。期望和方差三:泊松分布1.引入很多场合下,我们感兴
原创
527阅读
0评论
2点赞
发布博客于 3 月前

概率论笔记(三)几种常见的概率分布

文章目录一:伯努利分布/0-1分布二:二项分布三:泊松分布一:伯努利分布/0-1分布如果随机试验仅有两个可能的结果,那么这两个结果可以用0和1表示,此时随机变量X将是一个0/1的变量,其分布是单个二值随机变量的分布,称为伯努利分布。注意伯努利分布关注的是结果只有0和1,而不管观测条件是什么。推导过程:注:就是一次实验下的结果。不是0就是1.二:二项分布本质: 就是n次实验下的伯努利分布。期望和方差三:泊松分布1.引入很多场合下,我们感兴趣的试验进行了很多次,但其中成功的却
原创
80阅读
0评论
0点赞
发布博客于 3 月前

概率论笔记(二)概率分布

文章目录一:随机变量的理解二:分布函数三:离散型分布四:连续型分布一:随机变量的理解注:其实随机变量就是一个实数,它是把随机事件映射成了一个实数,方便表示!!!二:分布函数注: 随机变量是一个数,此时事件利用数来表示了,这样在其基础上,我们就可以利用将其事件的概率(数的大小)转换成一个函数,主要是关于小x的函数。而分布函数就是一个事件累计的过程,也就是概率累计的过程。这里的事件累计可以看成是多个随机事件的组成。三:离散型分布1.离散事件2.分布函数3.例子四:连续型
原创
55阅读
0评论
0点赞
发布博客于 3 月前

随机过程北交历年试题

北交的随机过程历年试题,包含从07到18年的10套,每个试卷5道题。注:没有答案。仅供参考,了解下题型。
rar
发布资源于 3 月前

概率论笔记(一)重要公式

文章目录一:基本公式二:互斥事件三:独立事件四:条件概率五:全概率公式六:贝叶斯公式一:基本公式二:互斥事件三:独立事件1.什么是独立注:独立,如:今天中午下雨的概率和你玩不玩游戏的概率,毫无关系,可以认为是两个不同的维度的比较;而互斥,你12点去吃饭或者去玩游戏,同一维度,只能有一个发生。2.公式四:条件概率1.理解2.公式五:全概率公式六:贝叶斯公式总结:可以看到其实所谓的全概率公式和贝叶斯公式其实就是简单的条件概率和基本概率的推导,由条件概率
原创
34阅读
0评论
1点赞
发布博客于 3 月前

线性代数(三)行列式

文章目录一:行列式简介二:行列式的性质三:克拉默法则、体积和线性变化一:行列式简介1.定义:前提:方阵A可逆------------A的行列式非02.行列式求法:即包含按行展开和按列展开:3.三角矩阵的行列式二:行列式的性质根据这些性质可以得出求行列式的另一种方法,就是利用初等行变化,其中过程中要有变号、K倍的计算,最后化简为三角矩阵,利用三角矩阵的性质直接求出行列式的值。三:克拉默法则、体积和线性变化1.克拉默法则求行列式注:该法则其实对手工计算没有什么
原创
574阅读
0评论
0点赞
发布博客于 3 月前

线性代数(二)矩阵代数

文章目录一:矩阵运算二:矩阵的逆三:向量方程四:矩阵方程五:线性方程组的解集六:阶段总结七:线性无关一:矩阵运算1.和与标量运算:这里比较简单,就不再赘述。2.矩阵乘法:本质:其实就是线性变化,线性变化见:https://blog.csdn.net/qq_37534947/article/details/1094513903.矩阵的乘幂4.矩阵的转置:二:矩阵的逆1.阶梯型以及行简化阶梯型任何非0矩阵都可以行化简为阶梯形矩阵、但用不同的方法可以化为不同的阶梯形矩阵
原创
75阅读
0评论
0点赞
发布博客于 3 月前

线性代数(一)矩阵和方程组

文章目录一:线性方程组二:行化简与阶梯形矩阵三:向量方程四:矩阵方程五:线性方程组的解集六:阶段总结七:线性无关一:线性方程组1.线性方程:2.解的情况:3.系数矩阵、增广矩阵:系数矩阵:方程组对应的系数组成的矩阵。增广矩阵:方程组对应的系数以及最后的常数组成的矩阵。4.求解线性方程组:基本思想:初等行变换:注:可以对比一下基本思想和初等行变换,其实本质是一样的,因为求结过程是一样的,所以对于等价的矩阵来说,其具有相同的解集。其实很重要的一点,就是行变换是可逆的:5
原创
149阅读
0评论
0点赞
发布博客于 3 月前

pytorch实现前馈神经网络实验(torch实现)

手动实现请参考:https://blog.csdn.net/qq_37534947/article/details/109394648二:“利用torch.nn实现前馈神经网络解决回归、二分类、多分类任务”实验注: 因为相比于手动实验其主要是在模型的构建中利用了torch.nn模块,其他的部分都是一样的,这里我主要介绍如何利用torch模块构建的模型。2.1“利用torch.nn实现前馈神经网络解决回归”实验实验过程:2.1.1 利用torch.nn构建模型以及初始化参数1. #实现Flatte
原创
283阅读
0评论
0点赞
发布博客于 4 月前

pytorch实现前馈神经网络实验(torch实现)

pytorch实现前馈神经网络实验(torch实现)参考链接:https://blog.csdn.net/qq_37534947/article/details/109402126
rar
发布资源于 4 月前

Datasets.rar

MNIST手写数据集,参考文章:https://blog.csdn.net/qq_37534947/article/details/109394648
rar
发布资源于 4 月前

pytorch实现前馈神经网络实验(手动实现)

一:“手动实现前馈神经网络解决回归、二分类、多分类任务”实验1.1“手动实现前馈神经网络解决回归”实验实验过程:1.1.1 导入所需要的包1. import torch 2. import numpy as np 3. import random 4. from IPython import display 5. from matplotlib import pyplot as plt 6. import torch.utils.data as Data 1.1.2自定义数
原创
398阅读
2评论
1点赞
发布博客于 4 月前

pytorch实现前馈神经网络实验(手动)代码

参考文章:https://blog.csdn.net/qq_37534947/article/details/109394648
rar
发布资源于 4 月前

ubutun安装tensorflow-gpu

文章目录前言一、anaconda3的安装与配置1.下载anaconda32.安装anaconda33.配置环境4.创建虚拟环境二、安装tensorflow-gpu1.查看显卡2.查看显卡驱动版本以及GCC编译版本3.查看cuda版本型号4.查看cudnn 版本型号5.按照python版本、显卡驱动、GCC、cuda版本、cudnn版本安装指定版本的tesorflow-gpu6、安装tensorflow-gpu7、待补充三、pycharm利用conda创建虚拟环境(另一种创建虚拟环境的方法,另一种见前面的一.
原创
46阅读
1评论
0点赞
发布博客于 4 月前

ModelNet+ModelNet40+modelnet40_ply_hdf5_2048+sharpnet_part_seg_hdf5_data

pointnet分类分割数据集,以及未经处理的modelnet40数据集。已经在pointnet开源代码跑通了,txt为百度网盘链接,永久有效。
txt
发布资源于 4 月前

c++的1道算法题,求大佬解答

![图片说明](https://img-ask.csdn.net/upload/202010/22/1603336218_378057.png) 有c++算法大佬,帮忙看一下吗。 有比枚举复杂度低的算法吗! 枚举超时!!
1回答
发布问题于 4 月前

深度学习复习总览(六)

循环神经网络:https://blog.csdn.net/qq_37534947/article/details/108369828
原创
21阅读
0评论
0点赞
发布博客于 4 月前

深度学习复习总览(五)

文章目录卷积神经网络一、三个特点二、卷积和互相关三、卷积操作四、池化五、增加输出单元的感受野六、卷积网络发展历程卷积神经网络为什么引入卷积网络?主要是对于图片来说,全连接神经网络的几个弊端如下:一、三个特点稀疏交互/局部连接:在全连接神经网络,一层的每个神经元和前一层的所有神经元都有连接;而在卷积神经神经网络中,输出单元和前一层的部分神经元(卷积核大小)有连接;这样导致的结果是参数由M(L)*M(L-1)减少为M(L) *K * K. 其中K为卷积核大小/滤波器大小。参数共享:对于上面
原创
61阅读
0评论
0点赞
发布博客于 4 月前

深度学习复习总览(四)

深度模型优化与正则化:网络优化目的:经验风险最小化。对于低维来说,目的是逃离局部最优点;对于高维来说,则是逃离鞍点。梯度下降批量梯度下降、小批量梯度下降、随机批量梯度下降。学习率流程:学习率预热、学习率衰减、学习率周期调整、自适应学习率。1)学习率预热:2)学习率衰减3)周期性学习率调整4)自适应学习率缓解batch小导致的幅度震荡动量法比较:参数初始化数据初始化超参数优化过拟合-正则化有点累了—以后再写.
原创
57阅读
3评论
0点赞
发布博客于 4 月前

深度学习复习总览(三)

前馈神经网络:https://blog.csdn.net/qq_37534947/article/details/107832979补充:人工神经网络的三大要素:万能近似定理:可以看到只需要一个线性输出层和一个隐藏层组成的神经网络就可以近似任何函数,但是规模可能巨大,随着深度的增加,网络的表示能力呈指数增加。并且有着更好的泛化能力,但是未必带来模型效果的提升。...
原创
31阅读
0评论
0点赞
发布博客于 4 月前

深度学习复习总览(二)

深度学习的框架:核心组件张量、基于张量的相关操作、计算图、自动微分工具、cudnn等扩展包。张量:多维数组,0维张量即标量、1维张量即矢量、2维张量即矩阵、3为张量矩阵数组、4为张量…基于张量的相关操作:计算图:自动微分工具cudnn等扩展包:发展历程Tensorfloe和Pytorch对比主流框架介绍...
原创
29阅读
0评论
0点赞
发布博客于 4 月前

深度学习复习总览(一)

一:绪论人工智能:使一部机器人像人一样进行感知、认知、决策、执行的人工程序或系统。标志事件表:人工智能诞生:1956年的达特茅斯会议三个层面:目前处于第二个分类:三起两落:其中第一次是感知机的出现,第二次是BP的出现,第三次是包括是三个,分别是:逐层预训练算法、深度学习算法在ImageNet以及2016年的AlphaGo。一些重要人物:二:基础知识机器学习三要素:模型、学习准则、优化算法。模型:映射函数。学习准则:经验风险最小化。优化算法:梯度下降。神经
原创
74阅读
1评论
0点赞
发布博客于 4 月前

深度学习/花书:第十章(序列建模:循环和递归网络)

一:主要流程二:为什么需要序列模型?三:网络记忆能力在RNN出现前,一些具有记忆能力的网络:1)TDNN2)自回归模型四:循环神经网络五:循环神经网络的计算图六:序列模型解决的问题七:BPTT(随时间反向传播)—重点1)前向传播2)反向传播八:双向循环神经网络九:长期依赖的挑战十:LSTM十一:GRU...
原创
51阅读
0评论
0点赞
发布博客于 6 月前

c++一些简单操作

一:C++中%d,%s,%x,%f,%.100f,%的意思二:c++生成uuid#include <boost/uuid/uuid.hpp>#include <boost/uuid/uuid_io.hpp>#include <boost/uuid/uuid_generators.hpp> int main(){ boost::uuids::uuid a_uuid = boost::uuids::random_generator()(); s
原创
32阅读
0评论
0点赞
发布博客于 6 月前

ubuntu服务器安装图形化界面总结

一:安装vncserver$ sudo apt-get update$ sudo apt-get upgrade$ apt-get install vnc4server二:开启vncsrever$ vncserver输入密码:xxxxxx提示:New ‘:1 ()’ desktop is ****:1 (****代表主机名)即表示启动vnc成功,在主目录下产生一个.vnc目录三:修改vnc启动界面$ vi ~/.vnc/xstartup注:注释掉“x-window-manager
原创
267阅读
0评论
0点赞
发布博客于 6 月前

pytorch实验.rar

基于pytorch的实现logistic和softmax回归,模型的创建分别含手动和torch,博客见https://blog.csdn.net/qq_37534947/article/details/108179408
rar
发布资源于 6 月前

pytorch实现基本的logistic和softmax回归实验(手动+torch)

前提:不是前馈神经网络,没有隐藏层。一:Logistic回归实验–人工构造数据集,手动构造模型要求:动手从0实现logistic回归,实现二分类,人工构造数据集,并分析loss、训练集、测试集的准确率。(要求从零实现二元交叉熵)实验过程:1.1人工构造数据集1. # #自定义数据---训练集 2. num_inputs = 2 3. n_data = torch.ones(1500, num_inputs) # 数据的基本形态 4. x1 = torch.normal(2 * n_d
原创
609阅读
0评论
4点赞
发布博客于 6 月前

ubutun18.0.4系统安装中文字体

一:从Windows系统中找到自己对应的字体文件目录如下:可以选择“宋体常规“–.ttc文件二:建立字体目录$ sudo mkdir -p /usr/share/fonts/truetype/windows-fonts注:-p 表示递归创建目录,必须有,另外一般新的服务器的目录只是 有/usr/share,所以后面创建的目录名称是没有限制的,可以根据自己怎么容易记,怎么来。三:把下载好的字体拷贝到上面创建的目录这个就不用说了,主要可以利用FileZila软件拖拽即可,其下载上官网下载即可。
原创
104阅读
0评论
0点赞
发布博客于 6 月前

ubutun/linux(终端)安装anaconda3以及pytorch

1.下载anaconda3首先下载anaconda,由于官网的下载速度十分缓慢,而且还不支持断点续传,经常下载失败。故而,去国内的镜像站点下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/选择对应的版本下载,下载完成后上传到linux机器上去,服务器选择filezilla上传,虚拟机直接拖拽进去就ok了,这里我的linux服务器,并且ubutun系统版本18.0.4,这里下载的Anaconda3-5.2.0-Linux-x86_64.s
原创
190阅读
0评论
0点赞
发布博客于 6 月前

一些优秀的软件的安装步骤总结

1.编译器TDM-GCC的安装以及配置(Win10):https://blog.csdn.net/qq_43352918/article/details/102864333
原创
56阅读
1评论
0点赞
发布博客于 6 月前

git重要基本操作

一:git安装在Windows上安装Git:在Windows上使用Git,可以从Git官网直接下载安装程序https://git-scm.com/downloads,然后按默认选项安装即可。安装完成后,在开始菜单里找到“Git”->“Git Bash”,蹦出一个类似命令行窗口的东西,就说明Git安装成功!install-git-on-windows安装完成后,还需要最后一步设置,在命令行输入:$ git config --global user.name "Your Name"$ git
原创
45阅读
0评论
0点赞
发布博客于 6 月前

深度学习/花书:第六章(深度前馈网络)

一:相关概念二:主要流程三:线性问题四:非线性问题五:激活函数-隐藏单元六:激活函数–输出单元七:损失函数八:反向传播例子:https://blog.csdn.net/weixin_38347387/article/details/82936585...
原创
63阅读
0评论
0点赞
发布博客于 6 月前

Datasets.rar

Fashion-MNIST数据集,10类图片,其目录结构已经创建好,可以直接放到py文件同目录下,包含raw和processed
rar
发布资源于 7 月前

hdf5-1.8.21-Std-win7_64-vs14.rar

VS2015/2017配置HDF5,版本是1.8.21,使用于windows7/windows10 的64位系统
rar
发布资源于 7 月前

免费的查重网站总结

一:PaperAskhttps://www.paperask.com/二:PaperYYhttps://www.paperyy.com/member_new/free三:PaperTimehttps://www.papertime.shop/友情提醒:以上相比于知网查重都是虚高。
原创
136阅读
0评论
0点赞
发布博客于 7 月前

vs安装pcl库,遇到的问题总结(全)

这里假设vs、pcl已经全部安装,并且相关的包含目录和库目录也都配置完成,在测试时可能问题的总结如下:1. error C4996: ‘pcl::SAC_SAMPLE_SIZE’: This map is deprecated and is kept only to prevent breaking existing user code. Starting from PCL 1.8.0 model sample size is a protected member of the SampleConsens
原创
288阅读
0评论
1点赞
发布博客于 7 月前

深度学习基础(一):sigmoid/softmax/cross Entropy

在分类中,首先对于Logistic回归:从上图可以看出,很明显,其输出f(x;wb)主要是一些连续的实数,可以用于线性回归,但是对于分类问题无法进行直接进行分类预测,这里需要引入非线性的决策函数g(.)—这里我认为就是激活函数,使其输出从连续的实数转换到一些离散的标签。对于激活函数,可分为一下:其中tanh、relu、以及leaky relu激活函数相比sigmoid和softmax不适用与分类,其主要的作用以及差别见链接--------待这里主要来介绍sigmoid和softmax激活函数,
原创
115阅读
0评论
0点赞
发布博客于 7 月前

机器学习西瓜书笔记

第二章 模型评估与选择–三大分布(补充)卡方分布不要求记住密度函数。
原创
19阅读
0评论
0点赞
发布博客于 7 月前

pcd格式的点云文件详解

pcd的文件头格式:1)ascii编码格式:# .PCD v0.7 - Point Cloud Data file formatVERSION 0.7 FIELDS x y zSIZE 4 4 4TYPE F F FCOUNT 1 1 1WIDTH 460400HEIGHT 1VIEWPOINT 0 0 0 1 0 0 0POINTS 460400DATA ascii2)二进制编码格式:# .PCD v0.7 - Point Cloud Data file form
原创
349阅读
0评论
0点赞
发布博客于 7 月前

python利用open3d以及mayavi可视化pcd点云(二进制)

pcd点云的存储形式一共有两种,分别是binary和ascll码的形式,其详解见“”“;下面的代码是针对两者的,即都可以适用。前期准备:open3d的安装:pip install open3dpip install open3d-python==0.7.0.0 (这个必须有)mayavi的安装:需要顺序安装的包vtk、mayavi这里推荐whl下载,因为pip直接安装vtk比较慢,下载地址:https://download.csdn.net/download/qq_37534947/1251
原创
680阅读
0评论
1点赞
发布博客于 7 月前

tensorflow_gpu的各个版本的whl.rar

包含tensorflow_gpu,版本分别有1.2、1.4、1.7、1.8、1.9、1.10,适合python版本3.6.
rar
发布资源于 7 月前

kitti数据集在3D目标检测中的入门(二)可视化详解

推荐阅读第一篇博客:https://blog.csdn.net/qq_37534947/article/details/106628308
原创
1126阅读
0评论
2点赞
发布博客于 8 月前

包含界面、模型、可视化、标签.rar

利用pyqt5做的界面,然后打开本地图片,调用已经部署好的模型,进行识别,并将结果展示出来。以提供模型。其中需要安装好各种库,对应的文件位置自行修改下。
rar
发布资源于 8 月前

vtkmayavi.rar

配套的vtk和mayavi用于kitti点云的可视化,参考代码见博客“kitti数据集在3D目标检测中的入门,”其地址是https://blog.csdn.net/qq_37534947/article/details/106628308
rar
发布资源于 8 月前

kitti数据集在3D目标检测中的入门

数据集官网下载地址:http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d3D目标检测数据集由7481个训练图像和7518个测试图像以及相应的点云数据组成,包括总共80256个标记对象。上图红色框标记的为我们需要的数据,分别是彩色图像数据(12GB)、点云数据(29GB)、相机矫正数据(16MB)、标签数据(5MB)。其中彩色图像数据、点云数据、相机矫正数据均包含training(7481)和testing(7518
原创
2882阅读
22评论
10点赞
发布博客于 8 月前

idea2018项目导入2020.1idea依赖包失败的解决方法

三种方法如下:参考链接:https://blog.csdn.net/weixin_44824500/article/details/106329439https://blog.csdn.net/qq_35524157/article/details/105867493https://blog.csdn.net/qq_35524157/article/details/105867493
原创
343阅读
2评论
1点赞
发布博客于 9 月前

docker安装nginx+fastdfs(完整版)

1.查看fastdfs的镜像docker search fastdfs2.拉取镜像docker pull delron/fastdfs这个版本的镜像是比较全的,含有fastdfs以及nginx以及其相关的配置。3.启动tracker服务docker run -d --network=host --name tracker -v /var/fdfs/tracker:/var/fdfs delron/fastdfs tracker4.启动storage服务docker run -d --ne
原创
1475阅读
1评论
0点赞
发布博客于 9 月前