题目来源:大工慕课 链接
作者:Caleb Sung
堆与堆排序
1. 堆排序
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。
2. 堆
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:
同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子
该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]
ok,了解了这些定义。接下来,我们来看看堆排序的基本思想及基本步骤:
堆排序基本思想及步骤
堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
步骤一
构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。
假设给定无序序列结构如下:
此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。
找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。
此时,我们就将一个无需序列构造成了一个大顶堆。
步骤二
将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
将堆顶元素9和末尾元素4进行交换。
重新调整结构,使其继续满足堆定义。
再将堆顶元素8与末尾元素5进行交换,得到第二大元素8。
后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序。
小结
再简单总结下堆排序的基本思路:
a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
b.将堆顶元素与末尾元素交换,将最大元素”沉”到数组末端;
c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
代码实现
代码共有两个类。一个是创建代码时自动生成的与文件名相同的类,另一个是自定义的HeapSort类。主函数就在其中的第一个类中。
HeapSort类
包含sort()
、exchange()
、buildMaxHeap()
和maxHeapify()
四种方法。
class HeapSort {
private int[] array;
private int heapsize;
public HeapSort(int[] array) {
this.array = array;
this.heapsize = array.length;
}
void sort() {
buildMaxHeap();
for (int i = array.length - 1; i > 0; i--) {
exchange(0, i);
heapsize--;
maxHeapify(0);
}
}
void exchange(int a, int b) {
int temp = array[a];
array[a] = array[b];
array[b] = temp;
}
void buildMaxHeap() {
heapsize = array.length;
for(int i = heapsize/2 - 1 ; i>=0 ;i--)
maxHeapify(i);
}
void maxHeapify(int i) {
int largest;
int l = 2*i+1;
int r = 2*i+2;
if ((l < heapsize) && (array[l] > array[i]))
largest = l;
else largest = i;
if ((r < heapsize) && (array[r] > array[largest]))
largest = r;
if (largest != i) {
exchange(i ,largest);
maxHeapify(largest);
}
}
}
主函数与测试用例
public static void main(String[] args) {
int[] data = {9,8,7,6,5,4,3,2,1};
HeapSort obj = new HeapSort(data);
obj.sort();
for (int i : data)
System.out.println(i);
}
运行结果
[1, 2, 3, 4, 5, 6, 7, 8, 9]
总结
堆排序是一种选择排序,整体主要由构建初始堆+交换堆顶元素和末尾元素并重建堆两部分组成。其中构建初始堆经推导复杂度为O(n),在交换并重建堆的过程中,需交换n-1次,而重建堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)…1]逐步递减,近似为nlogn。所以堆排序时间复杂度一般认为就是O(nlogn)级。