- 博客(4)
- 资源 (2)
- 收藏
- 关注
原创 如何在windows环境下配置MingW64环境(附完全免费百度网盘8.1.0 版本MingW64包)
将mingw64文件夹中bin文件夹的路径添加至path中去,如图。建议将改文件夹拷贝至C盘,个人将该文件夹直接放在了C盘目录下。下载后得到的文件如图,进行解压,得到如下图所示文件。若显示如下,则MingW64环境配置成功。Win键+r打开cmd。
2024-09-19 15:20:21
1725
11
原创 DAC7512原理及其通过STM32的编程和应用
背景说明在我个人所做的某个项目中,需要用到DA转换,总所周知,STM32上就有DA转换模块,经过查询STM32的Datasheet,发现本我这个项目用到的STM32f103C8t6上并没有DAC外设,而且一个32上最多也只有两个DAC外设,但我需要用到四个,于是便开始找芯片,于是便找到了这款DAC7512。其只有6个引脚,而且引脚功能简洁易懂,于是便采用此芯片作为外设DAC。DAC7512原理DAC7512是一个12位的数模转换器,单电源供电,从2.7v到5.5v,可以接受多种通讯协议。这里我采用的是
2021-07-05 19:46:21
7532
2
原创 矩阵中的代数重数与几何重数——课程笔记
引子最近Matrix Theory要结课考试,复习到代数重数与矩阵重数的时候忘记了这两者的含义,于是复习后,决定写一篇blog,以便帮助自己记录正文对于任何一个n阶矩阵,其都有n个特征值(包含重根),但不一定有n个线性无关的特征向量。假设我们现在有一个四阶矩阵,那么我们就有四个特征值和若干线性无关的特征向量。假设特征值为1,1,2,3,那么对于特征值1,因为它是一个2重根,那么特征值1的代数重数就是2,假设特征值1 对应了2个线性无关的特征向量,那么特征值1的几何重数就是2,如果仅对应了一个线性无关
2020-12-15 17:18:48
32301
3
原创 超超超简单的卡尔曼滤波器原理——课程笔记
引子最近在上测试信号分析与处理的课程,学到卡尔曼滤波,老师讲的挺多,但发现其使用方法其实几句话就可以概括,特此写下人生中第一篇CSDN博客,以作分享与记录。正文卡尔曼滤波是在已知上一个状态和当前观测值的时候,对当前状态来进行最优估计。所以,我们首先要知道上一个状态和当前的观测值。我们将上一个状态记为xk−1x_{k-1}xk−1,将当前的观测值记为yky_kyk,将我们所求的当前状态记作xkx_kxk,那么有以下式子:xk=Ak1xk−1+Bkuk−1+wk−1x_k=A_{k1}x_{k-1
2020-12-11 21:37:20
226
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人