矩阵中的代数重数与几何重数——课程笔记

本文介绍了矩阵的代数重数与几何重数概念,通过一个四阶矩阵的例子阐述特征值的重根及其对应的线性无关特征向量数量。代数重数指特征值的重根次数,几何重数则表示该特征值对应的线性无关特征向量个数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引子

最近Matrix Theory要结课考试,复习到代数重数与矩阵重数的时候忘记了这两者的含义,于是复习后,决定写一篇blog,以便帮助自己记录

正文

对于任何一个n阶矩阵,其都有n个特征值(包含重根),但不一定有n个线性无关的特征向量。
假设我们现在有一个四阶矩阵,那么我们就有四个特征值和若干线性无关的特征向量。假设特征值为1,1,2,3,那么对于特征值1,因为它是一个2重根,那么特征值1的代数重数就是2,假设特征值1 对应了2个线性无关的特征向量,那么特征值1的几何重数就是2,如果仅对应了一个线性无关的特征向量,那么特征值1的几何重数就是1。

总结

某个特征值的代数重数就是算出来的该特征值是几重根,其几何重数就是这个特征值对应了几个线性无关的特征向量。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值