可汗学院统计学(二)

6. 泊松分布

考虑这样一个问题:一个小时内经过某路口的车辆数的概率。由于车辆经过一个路口是一瞬间的事,因此,可以把这个问题看成:在n个瞬时中,有k个瞬时有车经过路口的概率。设车经过路口的概率为p,则这个问题是一个n趋近于无穷大时的二项分布问题。

假设已知泊松分布的期望为 λ \lambda λ。则 E ( X ) = λ = n p , p = λ n E(X)=\lambda=n p, \quad p=\frac{\lambda}{n} E(X)=λ=np,p=nλ
计算过程为:
P ( x = k ) = lim ⁡ n → ∞ ( n k ) ⋅ ( λ n ) k ⋅ ( 1 − λ n ) n − k = lim ⁡ n → ∞ n ! k ! ( n − k ) ! ⋅ ( λ n ) k ⋅ ( 1 − λ n ) n − k = lim ⁡ n → ∞ n ⋅ ( n − 1 ) ⋯ ⋅ ( n − k + 1 ) n k ⋅ λ k k ! ⋅ ( 1 − λ n ) n ⋅ ( 1 − λ n ) − k = lim ⁡ n → ∞ 1 ⋅ λ k k ! ⋅ e − λ ⋅ 1 = λ k k ! ⋅ e − λ \begin{aligned} P(\mathrm{x}&=\mathrm{k} ) \\ &=\lim _{n \rightarrow \infty}\left(\begin{array}{c}{n} \\ {k}\end{array}\right) \cdot\left(\frac{\lambda}{n}\right)^{k} \cdot\left(1-\frac{\lambda}{n}\right)^{n-k} \\ &=\lim _{n \rightarrow \infty} \frac{n !}{k !(n-k) !} \cdot\left(\frac{\lambda}{n}\right)^{k} \cdot\left(1-\frac{\lambda}{n}\right)^{n-k} \\ &=\lim _{n \rightarrow \infty} \frac{n \cdot(n-1) \cdots \cdot(n-k+1)}{n^{k}} \cdot \frac{\lambda^{k}}{k !} \cdot\left(1-\frac{\lambda}{n}\right)^{n} \cdot\left(1-\frac{\lambda}{n}\right)^{-k} \\ &=\lim _{n \rightarrow \infty} 1 \cdot \frac{\lambda^{k}}{k !} \cdot e^{-\lambda} \cdot 1 \\ &=\frac{\lambda^{k}}{k !} \cdot e^{-\lambda} \end{aligned} P(x=k)=nlim(nk)(nλ)k(1nλ)nk=nlimk!(nk)!n!(nλ)k(1nλ)nk=nlimnkn(n1)(nk+1)k!λk(1nλ)n(1nλ)k=nlim1k!λkeλ1=k!λkeλ

7. 正态分布

正态分布的概率密度函数: p ( x ) = 1 σ 2 π e − 1 2 ( x − μ σ ) 2 p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} p(x)=σ2π 1e21(σxμ)2
Standard Z score: x − μ σ \frac{x-\mu}{\sigma} σxμ
表示数据离均值的距离是几个标准差。
正态分布可以通过二项分布近似很好地得到。
累计分布函数CDF: C D F ( x ) = ∫ − ∞ x p ( x ) d x C D F(x)=\int_{-\infty}^{x} p(x) d x CDF(x)=xp(x)dx

最佳打比赛,后续补充。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值