多卡聚合设备为5G智能安防保驾护航

随着平安城市、智慧城市等项目的不断推进,目前,我国一个二线以上城市的监控摄像头数量就可能达到百万量级。若将这些摄像头产生的原始视频传送到云端进行分析,耗费的资源可想而知。
5G带给安防4K/8K等超高清体验,并使海量终端接入网络,但与此同时,通信网络的承载负担无疑也在之前的基础上被大大加重。
面对5G带来的海量数据,边缘计算能够在近端进行处理,减少在云端之间来回传输数据的需要,可对生物识别、人群分析等结果进行高效处理,将智能场景从昂贵笨重的硬件设备中解放出来,提高智能安防的落地效率和复制速度;摄像头也可以将海量监控数据就近存储起来,为用户提供就近高速可存可分析的业务体验。
在这里插入图片描述
而在安防智能化过程中,遗留了许多旧式设备,这些设备与新兴设备难以互通,但边缘计算能够将旧式系统使用的通信协议转换成现代联网设备能够理解的语言,这意味着旧式设备能够与现代物联网平台实现连接,省下大量的设备更新费用。
随着联网智能设备的增多,数据安全也日益受到各方重视。在某些情况下,边缘设备能够在收集和本地处理数据而不必将这些数据传输到云端。因此,敏感信息不需要经由网络,即便云遭到网络攻击,影响也不会那么严重。
多卡聚合设备保障智能安防网络的稳定、安全

  1. 单链路的高带宽,真正的聚合
    多卡聚合智能融合通信设备能够聚合多条上网链路的带宽
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要将 PyTorch 单机单卡的脚本修改为单机多卡,需要执行以下步骤: 1. 导入必要的库和设定参数 ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms # 设定参数 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") batch_size = 64 epochs = 10 learning_rate = 0.01 ``` 2. 加载数据集并进行数据增广 ```python # 加载数据集 train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) # 数据增广 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True) ``` 3. 定义模型和损失函数 ```python # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x # 定义损失函数 criterion = nn.CrossEntropyLoss() ``` 4. 初始化模型和优化器 ```python # 初始化模型和优化器 model = Net().to(device) if torch.cuda.device_count() > 1: model = nn.DataParallel(model) optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) ``` 5. 训练模型 ```python # 训练模型 for epoch in range(epochs): model.train() train_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) train_loss /= len(train_loader.dataset) print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch+1, train_loss)) ``` 6. 测试模型 ```python # 测试模型 model.eval() correct = 0 total = 0 with torch.no_grad(): for inputs, labels in test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print('Accuracy: %.2f%%' % accuracy) ``` 在第四步中,我们使用了 `nn.DataParallel` 函数来将模型在多个 GPU 上并行计算。当有多个 GPU 时,PyTorch 会自动将 batch 拆分到不同的 GPU 上进行计算,然后将结果合并。在使用 `nn.DataParallel` 时,需要将模型包装在 `nn.DataParallel` 中,然后将其移到 GPU 上。如果只有一个 GPU,则不需要使用 `nn.DataParallel`。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值