基于Python flask的豆瓣电影数据分析可视化系统,功能多,LSTM算法+注意力机制实现情感分析,准确率高达85%

研究背景

随着数字化时代的到来,电影产业正迎来新的发展机遇和挑战。基于Python Flask的豆瓣电影数据分析可视化系统的研究背景凸显了对电影数据的深度分析和情感挖掘的需求。该系统功能丰富,不仅实现了多样化的数据分析功能,还结合了LSTM算法和注意力机制进行情感分析,准确率高达85%,为用户提供了高质量的情感识别工具。通过结合Python Flask框架的灵活性和易用性,以及先进的深度学习技术,该系统能够准确捕捉用户对电影的情感倾向和评价,帮助电影从业者和影视爱好者更好地了解电影市场和观众喜好。该研究背景将推动电影数据分析领域的发展,促进电影产业向数据驱动的智能化方向发展,为电影行业的内容生产、市场推广和用户体验提供了重要的技术支持和决策参考,有需要的话可以后台联系。

技术栈:

爬虫requests

数据处理pandas

数据可视化echarts

算法LSTM+注意力机制

flask框架

数据库MySQL

jieba分词

功能实现

完整视频如下:

基于Python flask的豆瓣电影可视化系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值