论文阅读《Convolutional Neural Networks for Sentence Classification》Yoon Kim

该论文介绍了使用CNN进行句子分类的实验,展示了简单CNN模型在多个任务中的优秀性能。通过微调预训练的单词向量,模型能够取得更好的结果。CNN架构包括卷积、最大池化和全连接层,有效地捕获句子的局部特征。实验在不同变体中比较了静态和动态词向量的使用,证明了CNN在NLP任务中的有效性。
摘要由CSDN通过智能技术生成

摘要:我们报告了一系列在预训练的单词向量之上用卷积神经网络(CNN)训练的实验,用于完成句子级分类任务。我们展示了一个具有很少超参数调整和静态向量的简单的CNN,它可以在多个基准测试中获得出色的结果。学习特定任务的向量通过微调可以进一步有很好的表现。为了使用特定任务向量和静态向量,我们对架构进行了简单的修改。我们在这里讨论的七个任务中,有四个取得了目前最好的结果,其中包括情感分析和问题分类。

模型

Figure 1.是本文的模型,一个略有变化的CNN架构,左边是一个n*k的矩阵表示一个包含n个单词的句子,每个单词为k维向量。

包含n个单词的句子表示为:

这里⊕表示拼接操作。一个卷积操作涉及一个滤波器w(设置一个滑窗的长度h,用这个滑窗滑过整个矩阵)产生一个新的特征,形成这个向量,称为feature map,通过以下公式计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值