摘要:我们报告了一系列在预训练的单词向量之上用卷积神经网络(CNN)训练的实验,用于完成句子级分类任务。我们展示了一个具有很少超参数调整和静态向量的简单的CNN,它可以在多个基准测试中获得出色的结果。学习特定任务的向量通过微调可以进一步有很好的表现。为了使用特定任务向量和静态向量,我们对架构进行了简单的修改。我们在这里讨论的七个任务中,有四个取得了目前最好的结果,其中包括情感分析和问题分类。
模型
Figure 1.是本文的模型,一个略有变化的CNN架构,左边是一个n*k的矩阵表示一个包含n个单词的句子,每个单词为k维向量。
包含n个单词的句子表示为:
这里⊕表示拼接操作。一个卷积操作涉及一个滤波器w(设置一个滑窗的长度h,用这个滑窗滑过整个矩阵)产生一个新的特征,形成这个向量,称为feature map,通过以下公式计算