最短路算法—Bellman-Ford算法

Bellman-Ford算法

描述

  • 迭代n次(实际意义,迭代k次之后不超过k条边的最短距离,若第n次迭代后有更新,抽屉原理可知存在负权环)
  • 每次循环所有边a, b, w(表示从a到b的边,权重w)总共m次
  • 存储边方式可任意,结构体存储,m个结构体
  • 更新原理类似于Dijkstra算法
  • 循环结束后,所有边满足三角不能式: dist[b] ≤ \le dist[a] + w
  • 若存在负权回路,最短路不存在。
  • 时间复杂度O(n*m)

题目

853. 有边数限制的最短路

描述

n个点 m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

求1 号点到 n号点的最多经过 k条边的最短距离,如果无法从 1号点走到 n号点,输出 impossible

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x到点 y的有向边,边长为 z。

输出格式

输出一个整数,表示从 1 号点到 n号点的最多经过 k条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1 1 1 ≤ \le n , k n, k n,k ≤ \le 500 500 500

1 1 1 ≤ \le m m m ≤ \le 10000 10000 10000

变长绝对值不超过10000。

代码
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 10010;

int n, m, k;
int dist[N], backup[N];

struct Edge {
    int a, b, w;
}edges[M];

int bellmanFord() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for (int i = 0; i < k; i ++) {
        memcpy(backup, dist, sizeof dist); //每次只用上一次的迭代结果,边数进行了限制,防止串联
        for (int j = 0; j < m; j ++) {
            int a = edges[j].a;
            int b = edges[j].b;
            int w = edges[j].w;
            dist[b] = min(dist[b], backup[a] + w); 
        }
    }
    return dist[n];
}
int main() {
    scanf("%d%d%d", &n, &m, &k);
    
    for (int i = 0; i < m; i ++) {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }
    int t = bellmanFord();
    // 正无穷最后会减小 但是不会减很多
    if (dist[n] > 0x3f3f3f / 2) 
        puts("impossible");
    else 
        printf("%d\n", t);
    return 0;
}

参考

  1. 搜索与图论二
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值