Gauss型求积公式及其Matlab程序

为什么要引入数值积分

由于Gauss型求积公式属于数值积分的内容,学东西总要知道它的来龙去脉,下面我简单介绍一下为什么要引入数值积分

给定函数 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b],考虑积分

I ( f ) = ∫ a b f ( x ) d x I(f)=\int_{a}^{b} f(x) dx I(f)=abf(x)dx
的计算问题,从数学分析中知道,当已知 f ( x ) f(x) f(x)的原函数为 F ( x ) F(x) F(x)时,由牛顿-莱布尼兹公式,有
I ( f ) = ∫ a b f ( x ) d x = F ( b ) − F ( a ) I(f)=\int_{a}^{b}f(x)dx=F(b)-F(a) I(f)=abf(x)dx=F(b)F(a)
然而,在实际计算中,被积函数的 f ( x ) f(x) f(x)的原函数经常无法用初等函数表示,但过于复杂。还有时, f ( x ) f(x) f(x)只在一些离散点上给出。在这样的情况下,就有必要借助数值方法来求 I ( f ) I(f) I(f)的近似值。

Gauss型求积公式的定义

从正交多项式理论可知,在区间[a,b]上,对给定的权函数 ρ ( x ) \rho(x) ρ(x),存在正交多项式系 ω k ( x ) k = 0 ∞ {\omega_{k}(x)}_{k=0}^{\infty} ωk(x)k=0并且可以将其构造出来。进一步,已经证明了 ω k ( x ) \omega_{k}(x) ωk(x)在[a,b]上恰有k个相异的根,取 ω n + 1 ( x ) \omega_{n+1}(x) ωn+1(x)的n+1个根为求积结点,构造插值型求积公式,将得到具有2n+1次代数精度的求积公式,称如此构造出来的求积公式为Gauss型求积公式即:

如果求积结点 x 0 , x 1 , . . . . , x n x_{0},x_{1},....,x_{n} x0,x1,....,xn,使插值型求积公式 ∫ − 1 1 f ( x ) d x ≈ ∑ k = 0 n A k f ( x k ) \int_{-1}^{1}f(x)dx\approx\sum_{k=0}^{n}A_kf(x_k) 11f(x)dx

  • 20
    点赞
  • 135
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值