【题解】LibreOJ10193 序列的第k个数 数学知识+快速幂

22 篇文章 0 订阅
19 篇文章 0 订阅
该博客介绍了如何解决LibreOJ上的第10193题,涉及等差和等比数列的通项公式,以及利用快速幂算法求解序列的第k个数。通过样例输入和输出,解释了不同情况下的序列类型,并给出了数据范围和提示。内容适合熟悉数学和快速幂的读者学习。
摘要由CSDN通过智能技术生成

题目链接

题目描述

BSNY 在学等差数列和等比数列,当已知前三项时,就可以知道是等差数列还是等比数列。现在给你序列的前三项,这个序列要么是等差序列,要么是等比序列,你能求出第 k k k 项的值吗。 如果第 k k k 项的值太大,对 200907 200907 200907 取模。

输入格式

第一行一个整数 T T T,表示有 T T T 组测试数据;

对于每组测试数据,输入前三项 a , b , c a,b,c a,b,c,然后输入 k k k

输出格式

对于每组数据输出第 k k k 项的值,对 200907 200907 200907 取模。

样例

样例输入

2
1 2 3 5
1 2 4 5

样例输出

5
16

样例说明

第一组是等差序列,第二组是等比数列。

数据范围与提示

对于全部数据, 1 ≤ T ≤ 100 , 1 ≤ a ≤ b ≤ c ≤ 1 0 9 , 1 ≤ k ≤ 1 0 9 1\le T\le 100,1\le a\le b\le c\le 10^9,1\le k\le 10^9 1T100,1abc109,1k109


就是一个通项公式和快速幂。

#include<cstdio>
typedef long long ll;
const int mod=200907;
int t;
ll a,b,c,k;
ll qpow(ll x,ll y)
{
	ll ret=1;x%=mod;
	while(y)
	{
		if(y&1)ret=ret*x%mod;
		x=x*x%mod;
		y>>=1;
	}
	return ret;
}
int main()
{
	//freopen("in.txt","r",stdin);
	scanf("%d",&t);
	while(t--)
	{
		scanf("%lld%lld%lld%lld",&a,&b,&c,&k);
		if(a+c==2*b)printf("%lld\n",(a%mod+((k-1)%mod)*(b-a)%mod)%mod);
		else printf("%lld\n",(a%mod)*qpow(b/a,k-1)%mod);
	}
	return 0;
}

总结

板子题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值