学习了大佬题解,讲的非常清晰。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
#define PB(v) push_back(v)
template<class T>inline void read(T&x)
{
x=0;int f=0;char ch=getchar();
while(ch<'0'||ch>'9')f|=ch=='-',ch=getchar();
while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(f)x=-x;
}
const int N=3e5+10;
const int M=6e5+10;
int n,m,hd[N],tot,w[N],bucket[N+M],ans[N],deep[N],f[N][25],dis[N],spn[M];
bool vis[N];
vector<int>v1[M],v2[M],v3[M];
struct Edge{
int v,nx;
}e[M];
struct node{
int u,v,dis,lca;
}p[N];
inline void add(int u,int v)
{
e[++tot].v=v;
e[tot].nx=hd[u];
hd[u]=tot;
}
inline void dfs(int now,int dep)
{
vis[now]=true;
deep[now]=dep;
for(int i=1;i<=22;i++)
f[now][i]=f[f[now][i-1]][i-1];
for(int i=hd[now];i;i=e[i].nx)
if(!vis[e[i].v])
{
f[e[i].v][0]=now;
dis[e[i].v]=dis[now]+1;
dfs(e[i].v,dep+1);
}
vis[now]=false;
}
inline int LCA(int u,int v)
{
if(deep[u]<deep[v])swap(u,v);
for(int i=0,div=deep[u]-deep[v];i<=22;i++)
if(div&(1<<i))u=f[u][i];
for(int i=22;i>=0;i--)
if(f[u][i]!=f[v][i])u=f[u][i],v=f[v][i];
return u==v?u:f[u][0];
}
//u->lca(u,v)的路径,当且仅当deep[i]+w[i]==deep[u]时,u节点对i节点是有贡献的
//只要符合deep[i]+w[i]的全部是玩家起点的点,就能对i点产生贡献
inline void dfs1(int now)
{
vis[now]=true;
int prev=bucket[deep[now]+w[now]+N];//全部+N避免负数
for(int i=hd[now];i;i=e[i].nx)
if(!vis[e[i].v])dfs1(e[i].v);
bucket[deep[now]+N]+=spn[now];
ans[now]+=bucket[deep[now]+w[now]+N]-prev;
int len=v1[now].size();
for(int k=0;k<len;k++)
--bucket[deep[v1[now][k]]+N];
vis[now]=false;
}
//lca(u,v)->v的路径,当且仅当dis(u,v)-deep[v]=w[i]-deep[i]成立时有贡献
inline void dfs2(int now)
{
vis[now]=true;
int prev=bucket[w[now]-deep[now]+N];
for(int i=hd[now];i;i=e[i].nx)
if(!vis[e[i].v])dfs2(e[i].v);
int len=v2[now].size();
for(int k=0;k<len;k++)
++bucket[v2[now][k]+N];
ans[now]+=bucket[w[now]-deep[now]+N]-prev;
len=v3[now].size();
for(int k=0;k<len;k++)
--bucket[v3[now][k]+N];
vis[now]=false;
}
int main()
{
//freopen("in.txt","r",stdin);
read(n);read(m);
for(int i=1,u,v;i<n;i++)
read(u),read(v),add(u,v),add(v,u);
for(int i=1;i<=n;i++)
read(w[i]);
f[1][0]=1;dfs(1,0);
for(int i=1,u,v;i<=m;i++)
{
read(u);read(v);
p[i].u=u;p[i].v=v;
p[i].lca=LCA(u,v);
p[i].dis=dis[u]+dis[v]-dis[p[i].lca]*2;
spn[u]++;//以x为路径起点的路径条数
v1[p[i].lca].PB(u);//以x为lca的路径的起点的集合
v2[v].PB(p[i].dis-deep[p[i].v]);//以x为终点的路径的起点集合
v3[p[i].lca].PB(p[i].dis-deep[p[i].v]);//以x为LCA的路径的终点的集合
}
dfs1(1);//从下至上
dfs2(1);//从上至下
for(int i=1;i<=m;i++)//如果lca能观察到这条路径上的人,需要去重
if(deep[p[i].u]==deep[p[i].lca]+w[p[i].lca])ans[p[i].lca]--;
for(int i=1;i<=n;i++)
printf("%d ",ans[i]);
printf("\n");
return 0;
}
总结
难度挺大的题