一维前缀和
多次询问,每次询问区间 KaTeX parse error: Expected 'EOF', got '}' at position 5: [l,r}̲ 的和
记
s
u
m
[
i
]
=
∑
j
=
1
i
a
[
j
]
sum[i]=\sum_{j=1}^ia[j]
sum[i]=∑j=1ia[j]
区间
[
l
,
r
]
[l,r]
[l,r] 的和为
s
u
m
[
r
]
−
s
u
m
[
l
−
1
]
sum[r]-sum[l-1]
sum[r]−sum[l−1]
差分+前缀和
多次操作,每次对区间
[
l
,
r
]
[l,r]
[l,r] 加上一个值
v
v
v
记
d
[
i
]
d[i]
d[i] 为修改的差分数组,每次给
d
[
l
]
+
v
d[l]+v
d[l]+v,给
d
[
r
+
1
]
−
v
d[r+1]-v
d[r+1]−v,表示增加的影响从
l
l
l 开始,在
r
+
1
r+1
r+1 结束。
记
s
u
m
d
[
i
]
=
∑
j
=
1
i
d
[
j
]
sumd[i]=\sum_{j=1}^id[j]
sumd[i]=∑j=1id[j] 表示原数组
a
[
i
]
a[i]
a[i] 的变化量,
s
u
m
[
i
]
=
∑
j
=
1
i
(
a
[
j
]
+
s
u
m
d
[
j
]
)
sum[i]=\sum_{j=1}^i(a[j]+sumd[j])
sum[i]=∑j=1i(a[j]+sumd[j])
二维前缀和
给定一个
n
×
m
n\times m
n×m 的矩阵,多次询问,每次询问以
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1) 为左上角、
(
x
2
,
y
2
)
(x_2,y_2)
(x2,y2) 为右下角的矩阵元素和。
记
s
u
m
[
i
]
[
j
]
sum[i][j]
sum[i][j] 是以
(
1
,
1
)
(1,1)
(1,1) 为左上角、
(
i
,
j
)
(i,j)
(i,j)为右下角的矩阵元素和,
s
u
m
[
i
]
[
j
]
=
a
[
i
]
[
j
]
+
s
u
m
[
i
−
1
]
[
j
]
+
s
u
m
[
i
]
[
j
−
1
]
−
s
u
m
[
i
−
1
]
[
j
−
1
]
sum[i][j]=a[i][j]+sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]
sum[i][j]=a[i][j]+sum[i−1][j]+sum[i][j−1]−sum[i−1][j−1]
每次询问的和为
s
u
m
[
x
2
]
[
y
2
]
−
s
u
m
[
x
1
−
1
]
[
y
2
]
−
s
u
m
[
x
2
]
[
y
1
−
1
]
+
s
u
m
[
x
1
−
1
]
[
y
1
−
1
]
sum[x_2][y_2]-sum[x_1-1][y_2]-sum[x_2][y_1-1]+sum[x_1-1][y_1-1]
sum[x2][y2]−sum[x1−1][y2]−sum[x2][y1−1]+sum[x1−1][y1−1]
差分+二维前缀和
记 d [ i ] [ j ] d[i][j] d[i][j] 为修改的差分数组,每次给 d [ x 1 ] [ y 1 ] + v d[x_1][y_1]+v d[x1][y1]+v、 d [ x 2 + 1 ] [ y 1 ] − v d[x_2+1][y_1]-v d[x2+1][y1]−v、 d [ x 1 ] [ y 2 + 1 ] − v d[x_1][y_2+1]-v d[x1][y2+1]−v、 d [ x 2 + 1 ] [ y 2 + 1 ] + v d[x_2+1][y_2+1]+v d[x2+1][y2+1]+v
//前缀和
for(int i=1;i<=n;++i)
sum[i]=sum[i-1]+a[i];
for(int i=1;i<=q;++i)
cin>>l>>r,cout<<sum[r]-sum[l-1];
//前缀和+差分
for(int i=1;i<=m;++i)
cin>>l>>r>>v,d[l]+=v,d[r+1]-=v;
for(int i=1;i<=n;++i)
sumd[i]=sumd[i-1]+d[i];
for(int i=1;i<=n;++i)
sum[i]=sum[i-1]+sumd[i]+a[i];
for(int i=1;i<=q;++i)
cin>>l>>r,cout<<sum[r]-sum[l-1];
//二维前缀和
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
sum[i][j]=a[i][j]+sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
for(int i=1;i<=q;++i)
cin>>x1>>y1>>x2>>y2,cout<<sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1];
//二维前缀和+差分 略
树上差分与前缀和
本蒟蒻实在太弱,写不来这个东西,然后发现了洛谷日报文章写的很好,还是去围观那个大佬的讲解吧。(资瓷洛谷,我太弱了qwq)