【知识点整理】前缀和与差分

这篇博客详细介绍了前缀和与差分的概念及其应用,包括一维和二维前缀和的计算方法,以及差分操作如何结合前缀和进行区间加法。此外,还提及了树上差分与前缀和的理论,但作者建议读者参考洛谷日报的相关文章以获取更深入的理解。
摘要由CSDN通过智能技术生成

一维前缀和

多次询问,每次询问区间 KaTeX parse error: Expected 'EOF', got '}' at position 5: [l,r}̲ 的和
s u m [ i ] = ∑ j = 1 i a [ j ] sum[i]=\sum_{j=1}^ia[j] sum[i]=j=1ia[j]
区间 [ l , r ] [l,r] [l,r] 的和为 s u m [ r ] − s u m [ l − 1 ] sum[r]-sum[l-1] sum[r]sum[l1]

差分+前缀和

多次操作,每次对区间 [ l , r ] [l,r] [l,r] 加上一个值 v v v
d [ i ] d[i] d[i] 为修改的差分数组,每次给 d [ l ] + v d[l]+v d[l]+v,给 d [ r + 1 ] − v d[r+1]-v d[r+1]v,表示增加的影响从 l l l 开始,在 r + 1 r+1 r+1 结束。
s u m d [ i ] = ∑ j = 1 i d [ j ] sumd[i]=\sum_{j=1}^id[j] sumd[i]=j=1id[j] 表示原数组 a [ i ] a[i] a[i] 的变化量, s u m [ i ] = ∑ j = 1 i ( a [ j ] + s u m d [ j ] ) sum[i]=\sum_{j=1}^i(a[j]+sumd[j]) sum[i]=j=1i(a[j]+sumd[j])

二维前缀和

给定一个 n × m n\times m n×m 的矩阵,多次询问,每次询问以 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 为左上角、 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) 为右下角的矩阵元素和。
s u m [ i ] [ j ] sum[i][j] sum[i][j] 是以 ( 1 , 1 ) (1,1) (1,1) 为左上角、 ( i , j ) (i,j) (i,j)为右下角的矩阵元素和, s u m [ i ] [ j ] = a [ i ] [ j ] + s u m [ i − 1 ] [ j ] + s u m [ i ] [ j − 1 ] − s u m [ i − 1 ] [ j − 1 ] sum[i][j]=a[i][j]+sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1] sum[i][j]=a[i][j]+sum[i1][j]+sum[i][j1]sum[i1][j1]
每次询问的和为 s u m [ x 2 ] [ y 2 ] − s u m [ x 1 − 1 ] [ y 2 ] − s u m [ x 2 ] [ y 1 − 1 ] + s u m [ x 1 − 1 ] [ y 1 − 1 ] sum[x_2][y_2]-sum[x_1-1][y_2]-sum[x_2][y_1-1]+sum[x_1-1][y_1-1] sum[x2][y2]sum[x11][y2]sum[x2][y11]+sum[x11][y11]

差分+二维前缀和

d [ i ] [ j ] d[i][j] d[i][j] 为修改的差分数组,每次给 d [ x 1 ] [ y 1 ] + v d[x_1][y_1]+v d[x1][y1]+v d [ x 2 + 1 ] [ y 1 ] − v d[x_2+1][y_1]-v d[x2+1][y1]v d [ x 1 ] [ y 2 + 1 ] − v d[x_1][y_2+1]-v d[x1][y2+1]v d [ x 2 + 1 ] [ y 2 + 1 ] + v d[x_2+1][y_2+1]+v d[x2+1][y2+1]+v

//前缀和
for(int i=1;i<=n;++i) 
    sum[i]=sum[i-1]+a[i];
for(int i=1;i<=q;++i)
    cin>>l>>r,cout<<sum[r]-sum[l-1];
//前缀和+差分
for(int i=1;i<=m;++i)
    cin>>l>>r>>v,d[l]+=v,d[r+1]-=v;
for(int i=1;i<=n;++i)
    sumd[i]=sumd[i-1]+d[i]; 
for(int i=1;i<=n;++i)
    sum[i]=sum[i-1]+sumd[i]+a[i];
for(int i=1;i<=q;++i)
    cin>>l>>r,cout<<sum[r]-sum[l-1];
//二维前缀和
for(int i=1;i<=n;++i)
    for(int j=1;j<=m;++j)
	    sum[i][j]=a[i][j]+sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
for(int i=1;i<=q;++i)
    cin>>x1>>y1>>x2>>y2,cout<<sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1];
//二维前缀和+差分 略 

树上差分与前缀和

本蒟蒻实在太弱,写不来这个东西,然后发现了洛谷日报文章写的很好,还是去围观那个大佬的讲解吧。(资瓷洛谷,我太弱了qwq)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值