资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
小D接到一项任务,要求他爬到一座n层大厦的顶端与神秘人物会面。这座大厦有一个神奇的特点,每层的高度都不一样,同时,小D也拥有一项特殊能力,可以一次向上跳跃一层或两层,但是这项能力无法连续使用。已知向上1高度消耗的时间为1,跳跃不消耗时间。由于事态紧急,小D想知道他最少需要多少时间到达顶层。
输入格式
第一行包含一个整数n,代表楼的高度。
接下来n行每行一个整数ai,代表i层的楼层高度(ai <= 100)。
输出格式
输出1行,包含一个整数,表示所需的最短时间。
样例输入
5
3
5
1
8
4
样例输出
1
数据规模和约定
对20%的数据,n<=10
对40%的数据,n<=100
对60%的数据,n<=5000
对100%的数据,n<=10000
个人分析
题目标签为动态规划,这里每层楼梯都有两种方式可以通过,那么就需要记录每层楼梯2种通过方式下所消耗的时间,这里设立变量dp[n][2]来记录,假设dp[x][0]代表用爬的方法来通过这一层;dp[x][1]代表用跳跃的方法来通过这一层。跳跃不消耗时间,且可以从一次跳跃1层或2层中选择,但是不可以连续跳跃;爬一次可以爬1层,且它的前一个状态可以是跳跃也可以是爬。那么对应的状态转移方程为:
- dp[i][0] = min(dp[i - 1][0] + height[i], dp[i - 1][1] + height[i]);
- dp[i][1] = min(dp[i - 2][0], dp[i - 1][0]);
代码如下:
#include<iostream>
#include<algorithm>
using namespace std;
const int maxSet = 10005;
int n, height[maxSet], dp[maxSet][2];
int main() {
cin >> n;
for (int i = 1; i <= n; i++) cin >> height[i];
dp[1][0] = height[1]; //[x][0]代表用爬的方法来通过这一层
dp[1][1] = dp[0][1] = dp[0][0] = 0; //[x][1]代表用跳跃的方法来通过这一层
for (int i = 2; i <= n; i++) {
dp[i][0] = min(dp[i - 1][0] + height[i], dp[i - 1][1] + height[i]);
dp[i][1] = min(dp[i - 2][0], dp[i - 1][0]);
}
cout << min(dp[n][0], dp[n][1]);
return 0;
}