蓝桥杯 算法提高 秘密行动 c++求解

资源限制

时间限制:1.0s 内存限制:256.0MB

问题描述

小D接到一项任务,要求他爬到一座n层大厦的顶端与神秘人物会面。这座大厦有一个神奇的特点,每层的高度都不一样,同时,小D也拥有一项特殊能力,可以一次向上跳跃一层或两层,但是这项能力无法连续使用。已知向上1高度消耗的时间为1,跳跃不消耗时间。由于事态紧急,小D想知道他最少需要多少时间到达顶层。

输入格式

第一行包含一个整数n,代表楼的高度。

接下来n行每行一个整数ai,代表i层的楼层高度(ai <= 100)。

输出格式

输出1行,包含一个整数,表示所需的最短时间。

样例输入

5
3
5
1
8
4

样例输出

1

数据规模和约定

对20%的数据,n<=10
对40%的数据,n<=100
对60%的数据,n<=5000
对100%的数据,n<=10000

个人分析

题目标签为动态规划,这里每层楼梯都有两种方式可以通过,那么就需要记录每层楼梯2种通过方式下所消耗的时间,这里设立变量dp[n][2]来记录,假设dp[x][0]代表用爬的方法来通过这一层;dp[x][1]代表用跳跃的方法来通过这一层。跳跃不消耗时间,且可以从一次跳跃1层或2层中选择,但是不可以连续跳跃;爬一次可以爬1层,且它的前一个状态可以是跳跃也可以是爬。那么对应的状态转移方程为:

  • dp[i][0] = min(dp[i - 1][0] + height[i], dp[i - 1][1] + height[i]);
  • dp[i][1] = min(dp[i - 2][0], dp[i - 1][0]);

代码如下:

#include<iostream>
#include<algorithm>
using namespace std;

const int maxSet = 10005;

int n, height[maxSet], dp[maxSet][2];

int main() {
	cin >> n;
	for (int i = 1; i <= n; i++) cin >> height[i];
	dp[1][0] = height[1]; //[x][0]代表用爬的方法来通过这一层
	dp[1][1] = dp[0][1] = dp[0][0] = 0;  //[x][1]代表用跳跃的方法来通过这一层
	for (int i = 2; i <= n; i++) {
		dp[i][0] = min(dp[i - 1][0] + height[i], dp[i - 1][1] + height[i]);
		dp[i][1] = min(dp[i - 2][0], dp[i - 1][0]);
	}
	cout << min(dp[n][0], dp[n][1]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值