[MMDetection]测试模型

文章详细介绍了如何在MMdetection3.10框架下进行模型测试,包括基本的命令行选项如--show和--show-dir,以及高阶操作如计算单类精度(AP)、设定IOU阈值和绘制loss曲线。提供了具体的配置文件修改方法和脚本调用示例。
摘要由CSDN通过智能技术生成

以下是基于MMdetection3.10版本

1、简单测试模型

测试模型一般使用tools中的test.py,一般使用方式

python tools/test.py config文件路径 权重文件路径

可以通过--show 来以gui展示检测结果

 python tools/test.py config文件路径 权重文件路径 --show

可以通过--show-dir 来指定结果保存的文件夹 

 python tools/test.py config文件路径 权重文件路径 --show-dir 文件保存路径

 或者可以通过修改config文件来测试模型并保存结果。

以上保存与展示的结果是由Ground Truth和预测结果拼接而成的,左边为Ground Truth,右边为预测结果。

2、测试模型的高阶操作

2.1、测试模型的单类精度(AP)

在配置文件中添加

eval_evaluator = dict(classwise = True)

test_evaluator = dict(classwise = True)

python tools/test.py config文件路径 权重文件路径

 或者找到继承文件中的test_evaluator,在里面添加class_wise = True

 2.2 指定IOU阈值

1、直接找到配置文件中的以下地方修改

2、或者直接在配置文件中model部分添加以下内容

 结果:

IOU=0.65

 IOU=0.5

 2.3 绘制loss曲线

loss数据一般保存在训练文件夹的vis_data中的scalars.json文件中,如以下路径

work_dirs\rtmdet_tiny_8xb32-300e_coco\20230708_135503\vis_data\scalars.json

绘制loss曲线时,需要用到tools\analysis_tools\analyze_logs.py

例如 绘制分类损失

python tools\analysis_tools\analyze_logs.py plot_curve work_dirs\rtmdet_tiny_8xb32-300e_coco\20230708_135503\vis_data\scalars.json --keys loss_cls --legend loss_cls 

 同时绘制分类损失和回归损失,同时还可以指定--out losses.pdf,将结果保存为PDF文档。

python tools\analysis_tools\analyze_logs.py plot_curve work_dirs\rtmdet_tiny_8xb32-300e_coco\20230708_135503\vis_data\scalars.json --keys loss_cls  loss_bbox --legend loss_cls loss_bbox

根据官方文档资料的自定义模型部分,MMDetection允许用户通过组合不同的模块组件来构建自定义的检测模型MMDetection提供了丰富的即插即用的算法和模型,支持众多主流和最新的检测算法,比如Faster R-CNN等。然而,网上对于MMDetection的资料还相对较少,但有一篇博客提供了关于如何使用MMDetection替换自己实现的backbone结构的经验,该博客记录了作者如何设计的backbone结构来替换DETR模型的ResNet,并使用口罩检测数据集进行训练。 因此,MMDetection的自定义模型可以通过组合不同的模块组件来实现,并且有丰富的算法和模型可供选择,同时我们可以根据需要替换掉已有的backbone结构来进行训练。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [MMDetection系列 | 3. MMDetection自定义模型训练](https://blog.csdn.net/weixin_44751294/article/details/126804581)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [MMDetection实战:MMDetection训练与测试](https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/85331635)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开始学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值