自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Mickey的博客

人工智能研究生在读

  • 博客(49)
  • 收藏
  • 关注

原创 SpringBoot后端开发知识点总结(持续更新)

本帖持续更新

2025-06-12 18:46:58 274

原创 HBuilderX无线连接安卓真机调试完整指南

作为一名前端开发者,在进行移动端应用开发时,真机调试是不可或缺的环节。本帖将详细介绍如何使用HBuilder X通过无线方式连接安卓手机进行调试,相比传统USB连接方式,无线调试更加便捷高效。

2025-06-10 22:03:12 546

原创 Redis持久化策略:RDB与AOF详解

Redis提供了两种主要的持久化机制来保证数据安全:RDB(Redis Database)和AOF(Append Only File)。本帖详细介绍这两种策略的工作原理、优缺点及配置方式。

2025-06-08 17:28:25 511

原创 使用Docker部署MySQL&Redis容器与常见命令

本帖涉及WSL配置和Docker&Redis部署镜像相关教程

2025-06-06 10:36:39 700

原创 LeetCode热题100:Java双指针中等难度题目精解

11. 盛最多水的容器;15. 三数之和。

2025-05-22 10:11:37 650

原创 LeetCode热题100:Java哈希表中等难度题目精解

49. 字母异位词分组;128. 最长连续序列。

2025-05-21 16:31:51 489

原创 《苍穹外卖》SpringBoot后端开发项目核心知识点与技术栈整理(DAY10 to DAY12)

本帖继续介绍《苍穹外卖》SpringBoot后端开发中最后四个技术栈:Spring Task、WebSocket、Apache Echarts、Apache POI。

2025-05-20 09:56:29 760

原创 《苍穹外卖》微信支付代码模块的解析与学习

由于微信支付的接入需要以公司名义申请并开通微信支付商户号,个人开发者无法直接进行实际支付功能的测试与调试,因此本帖将专注于相关代码逻辑的解析与学习。

2025-05-12 18:07:55 765

原创 《苍穹外卖》SpringBoot后端开发项目核心知识点总结与技术栈整理(DAY5 to DAY9)

本文综合介绍了Redis、HttpClient、微信小程序、SpringCache和内网穿透等核心技术。

2025-04-27 16:06:07 934

原创 教你快速上手YOLO系列模型训练与验证:Ultralytics框架简明教程

本文是Ultralytics官方中文文档的精华简化版,建议搭配官方完整文档学习 ✅ 提取官方文档核心内容✅ 避开初学者常见深坑✅ 提供可直接运行的代码片段✅ 用最简流程实现YOLO目标检测实战。

2025-03-28 22:25:05 906

原创 《苍穹外卖》SpringBoot后端开发项目核心知识点与常见问题整理(DAY1 to DAY4)

《苍穹外卖》SpringBoot后端开发项目核心知识点整理

2025-03-09 23:01:06 2996 4

原创 conf配置文件修改后Nginx跨网络依然无法访问或者无法渲染页面的解决方案

在完成 Nginx 配置后,尝试通过局域网或公网访问 Nginx 服务时,却遇到了“无法访问此网站”,或者页面内容无法正常渲染等问题,点击此文助你解决~

2025-03-06 13:54:33 545

原创 Nginx学习笔记:常用命令&端口占用报错解决&Nginx核心配置文件解读

Nginx(发音为 “engine-x”)是一款高性能的开源Web服务器软件,同时也可用作反向代理、负载均衡器和HTTP缓存。最初由俄罗斯程序员Igor Sysoev开发,并于2004年首次公开发布。Nginx以其高效的并发处理能力、低资源消耗以及高可靠性而著称,特别适用于高流量网站。

2025-02-21 19:26:14 1386

原创 YOLOv12震撼首发(附v12模型训练使用过程&A2C2f模块部署)

YOLOv12是一种基于注意力机制的YOLO框架新版本,旨在解决传统基于卷积神经网络(CNN)的模型在速度和性能之间的权衡问题。尽管注意力机制被证明在建模能力上具有显著优势,但其应用受限于速度不及CNN的问题。YOLOv12通过优化设计,不仅实现了与现有基于CNN的YOLO版本相同的速度,还提升了检测准确性。

2025-02-20 10:48:38 3832 11

原创 SpringBootWeb三层架构&分层解耦

三层架构(Three-Tier Architecture)是软件开发中常用的一种设计模式,它将应用程序分为三个主要层次:表示层(Presentation Layer)、业务逻辑层(Business Logic Layer)和数据访问层(Data Access Layer)。这种思想称为控制反转。Java中的多态是一种面向对象编程的特性,它允许一个引用变量指向不同类的对象,并根据实际引用的对象类型来执行对应的方法。的类都会被Spring的组件扫描机制发现,并注册为Spring应用上下文中的一个Bean。

2025-02-11 19:16:02 1726 2

原创 Mybatis快速入门与核心知识总结

实体类(Entity Class)是用于表示数据库中数据结构的对象模型。它们通常包含与数据库表列相对应的属性,并提供相应的getter和setter方法来访问这些属性。

2025-02-10 11:02:49 934

原创 Maven入门核心知识点总结

Maven 是一个基于项目对象模型(POM)的项目管理工具,主要用于 Java 项目的构建、依赖管理和项目信息管理。

2025-02-09 23:24:52 836

原创 万字长文总结前端开发知识---JavaScript&Vue3&Axios

本文参考黑马程序员:全网首发AI+JavaWeb开发入门,总结其中的JavaScript&Vue3&Axios相关知识点。

2025-01-25 23:14:45 1952 3

原创 Web前端开发技术之HTML&CSS知识点总结

2024年黑马程序员《全网首发AI+JavaWeb开发入门》之HTML&CSS知识点总结:新闻网界面与Tlias教学管理系统界面设计

2025-01-17 00:07:28 815

原创 简要认识Web技术三剑客:HTML&CSS&JavaScript

Web标准也称网页标准,由一系列的标准组成,大部分由W3C(World Wide Web Consortium,万维网联盟)负责制定。它主要包括三个组成部分:HTML&CSS&JavaScript

2025-01-14 15:32:39 975

原创 零基础学SpringBoot——黑马程序员SpringBoot3基础篇问题汇总

本文章持续总结博主在学习B站的黑马程序员SpringBoot3视频的时候遇到的一些问题

2025-01-07 16:54:23 1177

原创 【论文阅读】 Learning to Upsample by Learning to Sample

DySample是一种快速、有效且通用的动态上采样器,其主要概念是从点采样的角度来设计上采样过程,而不是传统的基于内核的动态上采样方法。与其他动态上采样器相比,DySample在延迟(latency)、训练内存(memory)、训练时间(training time)、浮点运算次数(GFLOPs)和参数量(parameters)等方面表现出更高的效率。在本文测试DySample上采样模块的过程中,首先从一个简单的实现开始,然后通过不断调整公式和参数等逐步改进其性能。

2024-11-28 10:19:20 2012 4

原创 解决Ultralytics的自定义YOLO模型单GPU可以训练多GPU训练却报错subprocess.CalledProcessError的问题

YOLO11模型已出,解决最新版本Ultralytics的自定义YOLO模型单GPU可以训练多GPU训练却报错subprocess.CalledProcessError的问题。

2024-11-12 15:49:19 1011

原创 解决ultralytics中的YOLOv8在执行task.py文件添加模块操作出现的KeyError报错

在ultralytics项目文件夹内进行单GPU训练的时候可以正常进行,但是启动多GPU后训练就会发生KeyEroor报错。

2024-10-16 00:31:44 707

原创 目标检测论文常用评价指标(Evaluation Metrics)总结

混淆矩阵(Confusion Matrix)、真阳性(True Positive, TP)、真阴性(True Negative, TN)、假阳性(False Positive, FP)、假阴性(False Negative, FN)、归一化混淆矩阵(Normalized Confusion Matrix)、精确度(Precision)、召回率(Recall)、F1值(F1-Score)、平均精确度(Average Precision, AP)、平均精确度(Mean Average Precision)等。

2024-09-26 09:45:31 1964 1

原创 【目标检测论文必备】通俗易懂地讲解用绿色、蓝色、红色框可视化描述YOLO模型权重对于单个图片的训练效果(TP、FP、FN)

通过本文掌握如何使用YOLO模型在目标检测可视化阶段中更加直观展示TP、FP、FN的概念。

2024-09-20 16:14:14 639

原创 YOLOv8可视化predict预测阶段如何调整标签框大小

并添加line_width参数输入合适的。寻找自己文件目录下的。修改到合适尺寸的数值。

2024-09-02 11:33:31 3587 6

原创 整理深度学习时最常用的Linux命令(自用)

杀掉 1 号显卡的所有进程。杀掉 2 号显卡的所有进程。

2024-08-06 22:23:45 394

原创 完美解决pip命令版本冲突导致对应版本模块包无法安装的问题

在对论文源码复现过程中,我们首先需要安装相关依赖文件:使用相关命令一键部署指定的环境,然后会出现pip版本过高导致对应版本模块包无法安装的问题。

2024-08-05 18:52:39 940

原创 目标检测经典模型之YOLOv5-yolo.py源码解析

这是YOLOv5项目的一部分,该文件包含YOLOv5特有的模块定义和一些实用工具函数。

2024-07-23 10:32:43 658 1

原创 目标检测经典模型之YOLOv5-detect.py源码解析

本帖是YOLOV5推理部分代码的中文逐行注释。由于AI注释的缘故,可能与源码会有小部分出入,所以不建议复制粘贴替换源码的detect.py文件。本贴的初衷是YOLOV5源码逻辑的学习,后续会不断修正该代码和加入新的注释。

2024-07-17 22:48:08 749

原创 如何在Linux系统下安装Anaconda

最近课题组实验室又新购了两台服务器,需要重新部署深度学习环境才能使用,但我突然发现自己不太记得Anaconda具体的安装过程了,特此复习一下并做一个记录贴。

2024-07-12 22:51:36 597

原创 利用MMDetection进行半监督目标检测(仅供参考)

半监督目标检测同时利用标签数据和无标签数据进行训练,一方面可以减少模型对检测框数量的依赖,另一方面也可以利用大量的未标记数据进一步提高模型。

2024-07-04 20:55:35 1476 2

原创 利用MMDetection将单阶段检测器作为Faster R-CNN的RPN

候选区域网络 (Region Proposal Network, RPN) 作为 Faster R-CNN 的一个子模块,将为 Faster R-CNN 的第二阶段产生候选区域。在 MMDetection 里大多数的二阶段检测器使用 作为候选区域网络来产生候选区域。然而,任何的单阶段检测器都可以作为候选区域网络,是因为他们对边界框的预测可以被视为是一种候选区域,并且因此能够在 R-CNN 中得到改进。

2024-06-28 01:12:26 1357

原创 MMDetection实用工具详解(下):模型复杂度(FLOPs、Parameters)、计算FPS、基准测试

MMDetection工具包提供了许多实用的工具,接着上一期我们继续分享另外两个实用工具:模型复杂度、基准测试。

2024-06-14 02:22:57 2147

原创 手把手教你利用YOLOX训练自定义数据集(COCO Dataset)

YOLOX 支持使用自定义数据集进行训练。为了在 YOLOX 上运行我们自己的数据集,我们需要遵循以下基本步骤

2024-05-29 23:58:18 3563

原创 在Pycharm编译器中利用PyQt5实现计算器应用

PyQt5是一个用于Python的跨平台图形用户界面(GUI)开发库,它是Qt库的Python绑定。Qt本身是一个强大的C++库,提供了丰富的API来开发桌面、嵌入式以及移动设备上的图形界面应用程序。PyQt5使得Python开发者能够利用Qt的强大功能,用Python编写具有原生外观和感受的桌面应用程序,并且能够跨多种操作系统运行,包括Windows、macOS、Linux等。

2024-05-17 22:41:47 2000

原创 MMDetection实用工具详解(上):日志分析、结果分析、混淆矩阵

MMDetection官方除了训练和测试脚本,他们还在目录下提供了许多有用的工具。本帖先为大家重点介绍其中三个简单而实用的工具:日志分析、结果分析、混淆矩阵。

2024-05-16 13:35:36 3396

原创 利用MMDetection进行模型微调和权重初始化

本文基于MMDetection官方文档,对模型微调和权重初始化进行第三方讲解,后续更新自己权重初始化的实验过程。

2024-05-13 16:47:19 3408 4

原创 【持续更新】深度学习过程中常见的Python代码疑难杂症汇总

即便在熟练掌握了Python的基本语法之后,涉足深度学习领域时,开发者往往会遇到一系列新的挑战,这些挑战源自于深度学习特有的复杂概念、高级库的使用以及大规模数据处理的需求。

2024-05-11 16:03:17 797 1

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除