我觉得:主持有两扇门,必定有一扇是山羊,即不论我选的是否中奖,主持人都会有一扇山羊。即简化成不论我选了什么主持人的一扇门和我的一扇门,各50%
但实际上:主持人总是有两扇门即2/3,肯定有一扇门为空,但这也不改变他有两扇门时的2/3概率

分歧:我觉得一扇绝对存在的空门(因为他是主持人,他选的一定是空门)没有提供信息(孤立地看待那扇门,没有看到那扇门和其他的联系)
换个角度:
- 在我选择之前,主持人去掉一个空门,我二选一50%
- 在我选择后(没打开),主持人再去掉一个空门,2/3
发生在我选择后提高了确定性
一定发生的事也可以带来信息
主持人一定可以选出一扇不中奖的门。
门可以分成两组。我选的,我没选的。这两组门中奖的概率一定。
在我没选的门中,知道了有一扇不中奖的门,那么该组剩下的门将平分该组中奖的概率(整体的思想),即该组中门的中奖概率提高了。
而又知道了其中一扇门没有中奖,由此,概率转移(集中)到了剩下的门上
整体的思想:他在那组中,组的整体概率是2/3,该组其他门都没有中奖。主持人不是选出一扇不中奖的门,而是在一组中选了一个选出一扇不中奖的门
极端条件理解法
假如有1000扇门,你选1,主持人排除998.换不换?
**不严谨。**也许1000扇门时是1/999;3扇门时是1/2;即三门问题中没有差别
开始结束忽略过程理解法
不换的情况下,第一次就要选到车1/3
换的情况下,第一次选到羊2/3
抛硬币,已经4次都是正面,会为第5次为反面的概率提供信息吗?
不会,因为每次抛硬币都是相互独立的。(当然,前提这是一枚正常的硬币)
**思考:**连续5次都是正面的概率不是很小吗?所以第5次为反面的概率应该更大,应该小概率事件很难发生(把整体当做一个小概率事件)
**回答:**连续4次都是正面,第5次是反面的概率也很小。(两者概率相同)。换言之:任何一种情况发生概率都是1/64.
真正大的概率是:抛5次,1次反面,4次正面.(抹去了顺序)
1万+

被折叠的 条评论
为什么被折叠?



