84. 柱状图中最大的矩形
题目:
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。
示例:
输入: [2,1,5,6,2,3]
输出: 10
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:单调栈
维护一个单调递增的栈,当遇到一个元素比栈顶元素小时,弹出栈顶元素,并收集结果。
那这样为什么正确呢?我简单说一下,我们可以想象一下,假设有一个元素 x 这个元素的 高度为 A[x]以这个高度为高的最大矩阵是多少,我们可以往x左边扩宽[0, x - 1]和往x右边扩宽[x + 1, A.length],在往左右两边扩宽的时候也同时要满足A[0, x - 1]和A[x + 1, A.length]的高度不超过A[x],而单调递增栈刚好维持了一个这样的结构:栈顶第一个元素一定大于后面的元素,栈顶第二个元素一定是比栈顶第一个元素小的第一个元素的。
class Solution {
public int largestRectangleArea(int[] h) {
Stack<Integer> st = new Stack<>();
int ans = 0;
int n = h.length;
for(int i = 0; i < n; i++){
while(!st.isEmpty() && h[st.peek()] > h[i]) {
int cur = h[st.pop()] * (i - (st.isEmpty() ? -1 : st.peek()) - 1);
ans = Math.max(ans, cur);
}
st.push(i);
}
while(!st.isEmpty()) {
int cur = h[st.pop()] * (n - (st.isEmpty() ? -1 : st.peek()) - 1);
ans = Math.max(ans, cur);
}
return ans;
}
}
s, cur);
}
return ans;
}
}