概率导论chapter6笔记

chapter6、7:随机过程

-补充知识
-知识点
-两种重要的随机过程
-伯努利过程和泊松过程

补充知识:

  1. 重要极限:
    * lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim_{n\to \infty}(1+\frac{1}{n})^{ n}=e limn(1+n1)n=e
    * lim ⁡ n → 0 ( 1 + n ) 1 n = e \lim_{n\to 0}(1+n)^{\frac{1}{n}}=e limn0(1+n)n1=e
  2. 随机过程:如伯努利分布和伯努利过程的区别:
    • 伯努利过程是由一系列独立同分布的伯努利试验构成。
    • 即由离散时间上的一个序列的随机变量 X 1 , X 2 . . . . X_1,X_2.... X1,X2....) 构成。
  3. 泊松过程和指数分布的关系,指数分布是泊松过程同一个状态两次出现的时间间隔的分布。

知识点:

  1. 随机过程
    • 随机过程是处理包含时间以及数据序列的概率模型.
    • 序列中的每个数据都可以视为一个随机变量
  2. 随机变量序列随机过程 的区别:
    • 强调数据序列之间的相关关系
    • 对长期均值感兴趣。??什么是长期均值
    • 刻画某些边界时间的似然或者频率

两种重要的随机过程:

  1. 到达过程:
    • 对象: 相邻到达时间(即两次到达之间的时间)是相互独立的随机变量的模型。
    • 时间离散: 相邻时间服从几何分布——>伯努利过程
    • 时间连续: 相邻时间服从指数分布——>泊松过程
  2. 马尔科夫过程:
    1.
    • 对象;考虑数据在时间点上演化,而且未来数据的演化与历史数据有概率相关结构。
    • 假设: 未来数据只依赖于当前的数据,而与过去的数据无关。

1. 伯努利过程和泊松过程

思考:

    1. 它们有什么作用?
    1. 什么时候是伯努利过程,什么时候是泊松过程
    1. 它们的典例:
    • 伯努利过程: 独立投掷硬币序列,并且每次概率相等。
    • 泊松过程:
      ###1.1 伯努利过程
补充知识:
    1. 与伯努利过程相关的随机变量及其性质:
    • a. 服从参数为n 和 p 的二项分布,这是n 次相继独立的试验成功的总次数S的分布。它的分布列,期望和方差是 p s ( k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . , n , E ( S ) = n p v a r ( S ) = n p ( 1 − p ) \begin{aligned} ps(k)&= C_{n}^kp^k(1-p)^{n-k},\\ k &= 0,1,2,...,n, \\ E(S)&=np \\ var(S)&=np(1-p) \end{aligned} ps(k)kE(S)var(S)=Cnkpk(1p)nk,=0,1,2,...,n,=np=np(1p)
    • b. 服从参数为p的几何分布。相互独立重复的伯努利试验首次成功的总次数T的分布。他的分别列,期望和方差是: P T ( t ) = p ( 1 − p ) t − 1 E ( T ) = 1 p v a r ( T ) = ( 1 − p ) p 2 \begin{aligned} PT(t) &= p(1-p)^{t-1}\\ E(T) &=\frac{1}{p}\\ var(T)&=\frac{(1-p)}{p^2} \end{aligned} PT(t)E(T)var(T)=p(1p)t1=p1=p2(1p)
    1. 推广了第二章的结论:如果两个随机变量U和V独立,则它们的任何函数g(U),h(V) 也是独立的。
1.1.1 独立性和无记忆性
    1. 与伯努利过程相关的独立性质:
    • 对于任意给定时间n, 随机变量序列 X n + 1 , X n + 2 , . . . X_{n+1},X_{n+2},... Xn+1,Xn+2,...(过程的过去)独立。
    • 对于任意给定时间n,令T是时间n之后首次成功的时间,则随机变量 T − n T-n Tn服从参数p的集合分布,并且与随机变量 X 1 , . . . , X n X_1,...,X_n X1,...,Xn独立。
1.1.2 相邻到达间隔时间
    1. 伯努利过程的另一种描述:
    • 开始于一串相互独立的,参数为p的集合分布随机变量序列 T 1 , T 2 , . . . , T_1,T_2,..., T1,T2,...,它们是相邻到达时间间隔
    • 观测成功(或到达)时间为 T 1 , T 1 + T 2 , T 1 + T 2 + T 3 , . . . T_1,T_1+T_2,T_1+T_2+T_3,... T1,T1+T2,T1+T2+T3,...
1.1.3 第K次到达的时间
  • 第K次成功(或到达)的时间 Y k Y_k Yk等于k个独立同分布,服从集合分布的随机变量之和,即 Y k = T 1 + . . . + T k Y_k=T_1+...+T_k Yk=T1+...+Tk
  • 第k次到达的时间的性质
    • 第k次到达的时间等于前k个相邻到达时间之和 Y k = T 1 + . . . + T k Y_k=T_1+...+T_k Yk=T1+...+Tk 而且 T 1 , . . . , T k T_1,...,T_k T1,...,Tk独立同分布,服从参数为p的几何分布。
      * Y k Y_k Yk的期望,方差分别为: E [ Y k ] = E [ T 1 ] + . . . + E [ T k ] = k p v a r [ Y k ] = v a r [ T 1 ] + . . . + v a r [ T k ] = k ( 1 − p ) p 2 \begin{aligned} E[Y_k]=E[T_1]+...+E[T_k]=\frac{k}{p}\\var[Y_k]=var[T_1]+...+var[T_k]=\frac{k(1-p)}{p^2} \end{aligned} E[Yk]=E[T1]+...+E[Tk]=pkvar[Yk]=var[T1]+...+var[Tk]=p2k(1p)
      * Y k Y_k Yk的分布列是 P Y k ( t ) = C t − 1 k − 1 p k ( 1 − p ) t − k , t = k , k = 1 , . . . , P_{Y_k}(t)=C_{t-1}^{k-1}p^k(1-p)^{t-k},t=k,k=1,..., PYk(t)=Ct1k1pk(1p)tk,t=k,k=1,...,这就是有名的阶数是为k的帕斯卡分布
1.1.4 伯努利过程的分裂与合并
  • 伯努利过程每次到达的概率为p,现在考虑如下分裂:每当有一个成功时,我们选择或者保留下来(概率为q),或者抛弃(概率为1-p)。
  • 合并: 两个独立的伯努利过程(参数分别是p和q),然后我们可以把它合并为过程(参数为p+q-pq)
  • 分裂: 把一个伯努利过程,拆分成两个独立的伯努利过程。
1.1.5 二项分布的泊松近似
  • 知识点:
    • 参数为 λ \lambda λ的泊松分布的随机变量 Z Z Z取非负整数值,其分布列如下 p Z ( k ) = e − λ λ k k ! , k = 0 , 1 , 2 , 3... p_Z(k) = e^{-\lambda}\frac{\lambda^{k}}{k!},k=0,1,2,3... pZ(k)=eλk!λk,k=0,1,2,3...均值和方差是 E [ Z ] = λ , v a r ( Z ) = λ E[Z]=\lambda,var(Z)=\lambda E[Z]=λ,var(Z)=λ
    • n → ∞ , p = λ n n\to\infty,p=\frac{\lambda}{n} n,p=nλ时,二项分布的概率 p S ( k ) = n ! ( n − k ) ! k ! p k ( 1 − p ) n − k p_S(k)=\frac{n!}{(n-k)!k!}p^k(1-p)^{n-k} pS(k)=(nk)!k!n!pk(1p)nk收敛到 p z k p_z{k} pzk,其中 λ \lambda λ是常数,k是任意非负整数。
    • 一般而言,泊松分布是二项分布的一个很好的近似,只要 λ = n p \lambda=np λ=np,n非常大,p非常小。
  • 证明:验证泊松近似的正确性:
    • 即证明在 n → ∞ , p → 0 , λ = n p 适 中 n\to \infty,p\to0,\lambda=np 适中 n,p0,λ=np 的情况下, p Z ( k ) = e − λ λ k k ! , k = 0 , 1 , 2 , 3... p_Z(k) = e^{-\lambda}\frac{\lambda^{k}}{k!},k=0,1,2,3... pZ(k)=eλk!λk,k=0,1,2,3...
    • 即证明:在 n → ∞ , p → 0 , λ = n p 适 中 n\to \infty,p\to0,\lambda=np 适中 n,p0,λ=np 的情况下,
      e − λ λ k k ! = n ! ( n − k ) ! k ! p k ( 1 − p ) n − k \begin{aligned} e^{-\lambda}\frac{\lambda^{k}}{k!}=\frac{n!}{(n-k)!k!}p^k(1-p)^{n-k} \end{aligned} eλk!λk=(nk)!k!n!pk(1p)nk
  • 例子6.7 不会做

###1.2 泊松过程

  • 泊松过程是连续时间轴上的到达时间,当一个到达时间在应用上无法将连续的时间离散化(频繁发生),就采用泊松过程来刻画。
  • 定义: P ( k , τ ) = P ( 在 时 间 长 度 为 τ 的 时 间 内 , 有 k 个 到 达 ) P(k,\tau)=P(在时间长度为\tau的时间内,有k个到达) P(k,τ)=P(τk)
  • 参数:$ \lambda 称为过程到达率或者强度$
  • 泊松过程的定义(证明泊松过程):
    • (时间同质性)k次到达的概率 P ( k , τ ) P(k,\tau) P(k,τ)在相同长度$ \tau$的时间内都是一样的。
    • (独立性) 一个特定时间段内到达的数目与其他时间段里到达的历史是独立的。
    • (小区间概率) 概率 P ( k , τ ) P(k,\tau) P(k,τ) 满足如下关系:
      最后一句不能理解,按照洛必达法则推出来应该是1呀????
      o k ( τ ) 是 k 阶 泰 勒 展 开 的 拉 格 朗 日 余 项 → 0 ( e 0 τ 的 泰 勒 展 开 , τ 时 间 内 0 次 到 达 ) e 0 τ = P ( 0 , τ ) = 1 − λ τ + o ( τ ) , ( e 1 τ 的 泰 勒 展 开 , τ 时 间 内 1 次 到 达 ) e 1 τ = P ( 1 , τ ) = λ τ + o 1 ( τ ) , ( e k τ 的 泰 勒 展 开 , τ 时 间 内 k 次 到 达 ) e k τ = P ( k , τ ) = e − λ τ ( λ τ ) k k ! = o k ( τ ) , k = 2 , 3 , . . . 这 里 的 τ 的 函 数 o ( τ ) 和 o k ( τ ) 满 足 : l i m τ → 0 o ( τ ) τ , l i m τ → 0 o k ( τ ) τ = 0 ; \begin{aligned} o_{k}(\tau)是k阶泰勒展开&的拉格朗日余项\to 0\\ (e^{0\tau}的泰勒展开,\tau 时间内0次到达)e^{0\tau}=P(0,\tau)&=1-\lambda\tau+o(\tau),\\ (e^{1\tau}的泰勒展开,\tau 时间内1次到达)e^{1\tau}=P(1,\tau)&=\lambda\tau+o_1(\tau),\\ (e^{k\tau}的泰勒展开,\tau 时间内k次到达)e^{k\tau}=P(k,\tau)&=e^{-\lambda\tau}\frac{(\lambda\tau)^{k}}{k!}=o_k(\tau),k=2,3,...\\ 这里的\tau 的函数o(\tau)和o_k(\tau)满足:\\ lim_{\tau\to0}\frac{o(\tau)}{\tau},&lim_{\tau\to0}\frac{o_{k}(\tau)}{\tau}=0; \end{aligned} ok(τ)k(e0ττ0)e0τ=P(0,τ)(e1ττ1)e1τ=P(1,τ)(ekτ,τk)ekτ=P(k,τ)τo(τ)ok(τ):limτ0τo(τ),0=1λτ+o(τ),=λτ+o1(τ),=eλτk!(λτ)k=ok(τ),k=2,3,...limτ0τok(τ)=0;
  • 泊松过程相关的变量及其性质:
    • 服从参数为 λ τ \lambda\tau λτ的泊松分布: 这是泊松分布过程中强度为 λ \lambda λ,时间长度为 τ \tau τ的区间内到达的总次数 N τ N_{\tau} Nτ,k是它的参数。他的分布列,期望,方差分别是 p N τ ( k ) = P ( k , τ ) = e − λ τ ( λ τ ) k k ! , k = 0 , 1 , . . . E [ N τ ] = λ τ , v a r ( N τ ) = λ τ \begin{aligned} p_{N_{\tau}}(k)&=P(k,\tau)=e^{-\lambda\tau}\frac{(\lambda\tau)^{k}}{k!},k=0,1,...\\ E[N_{\tau}]&=\lambda\tau, var(N_{\tau})=\lambda\tau \end{aligned} pNτ(k)E[Nτ]=P(k,τ)=eλτk!(λτ)k,k=0,1,...=λτ,var(Nτ)=λτ

    • 服从参数为 λ \lambda λ的指数分布: 这是首次到达的时间T分布。它的分布列,期望和方差是 f T ( t ) = λ e − λ t , t ≥ 0 ; E [ T ] = 1 λ ; v a r ( T ) = 1 λ 2 \begin{aligned} f_{T}(t) = \lambda e^{-\lambda t},t\geq0;E[T]=\frac{1}{\lambda};var(T)=\frac{1}{\lambda^{2}} \end{aligned} fT(t)=λeλt,t0;E[T]=λ1;var(T)=λ21

  • 泊松和伯努利过程的对比
泊松伯努利
到达时间连续离散
到达次数的分布泊松二项
相邻到达时间的分布指数几何
到达率 λ \lambda λ/单位时间p/每次实验
性质:
  1. 独立性和无记忆性
    • 对于任意给定的时间t>0,时间t之后的过程也是泊松过程,而且与时间t之前(包括时间t)的历史过程独立。
    • 对于任意给定的时间t,令时间T是时间t之后首次到达的时间,则随机变量T-t(时间间隔)服从参数为 λ \lambda λ的指数分布,且与时间t之前的(包括时间t)的历史过程相互独立。
    • 无记忆性:无论过去发生了什么都不能对未来实验的结果提供信息无记忆性是独立性中隐含的一个特征。
    • 时间同质性:时间区间内到达个数的分布列只与区间的长度有关,与区间的起始时刻无关。
  2. 例子:6.11 271 不明白,
    不明白它所描述的泊松过程是哪一个过程,是指的服务结束的个数,应该是结束了吗?—>x是中间的某一时刻: P ( x ) = { p , x = 这 个 时 刻 结 束 了 1 − p , x = 这 个 时 刻 没 有 结 束 P(x) = \left\{ \begin{aligned} p, &x=这个时刻结束了\\ 1-p,&x = 这个时刻没有结束 \end{aligned} \right. P(x)={p,1p,x=x=
    结束了就是成功。则时间间隔就是指数分布。这样来看的话,上一个时刻和下一个时刻相互独立,所以它们的是否结束的概率相等,所以三个人结束时间T的分布是相同的。
重要随机变量
  1. 相邻到达时间
    • 泊松过程的另一种描述:
      • 开始于一串相互独立并且公共参数为 λ \lambda λ的指数随机变量序列 T 1 , T 2 . . . T_1,T_2... T1,T2...,它们是相邻到达时间。
      • 过程的到达的时间为 T 1 , T 1 + T 2 , T 1 + T 2 + T 3 , . . . T_1,T_1+T_2,T_1+T_2+T_3,... T1,T1+T2,T1+T2+T3,...等等,这样形成的随机过程就是泊松过程。
  2. 第K次到达的时间
    • 第K次成功的时间=等于前面K次独立同分布且服从指数分布的随机变量之和, Y k = T 1 + T 2 . . . . . + T k Y_k=T_1+T_2.....+T_k Yk=T1+T2.....+Tk
    • 第K次到达的时间的性质:
      • 第K次到达的时间是前k个相邻到达时间之和 Y k = T 1 + T 2 . . . . . + T k \begin{aligned} Y_k=T_1+T_2.....+T_k \end{aligned} Yk=T1+T2.....+Tk 而且 T 1 , . . . , T k 独 立 同 分 布 T_1,...,T_k独立同分布 T1,...,Tk,服从参数为 λ \lambda λ的分布。
        + Y k 的 期 望 、 方 差 是 : Y_k的期望、方差是: Yk E [ Y k ] = E [ T 1 ] + E [ T 2 ] + . . . + E [ T k ] v a r [ Y k ] = v a r [ T 1 ] + v a r [ T 2 ] + . . . . + v a r [ T k ] \begin{aligned} E[Y_k] & = E[T_1]+E[T_2]+...+E[T_k]\\ var[Y_k]& = var[T_1]+var[T_2]+....+var[T_k] \end{aligned} E[Yk]var[Yk]=E[T1]+E[T2]+...+E[Tk]=var[T1]+var[T2]+....+var[Tk]
      • Y k Y_k Yk的分布密度是: f Y k ( y ) = λ k y k − 1 e − λ y ( k − 1 ) ! , y ≥ 0 , \begin{aligned} f_{Y_{k}}(y)=\frac{\lambda^{k}y^{k-1}e^{-\lambda y}}{(k-1)!},y\geq0, \end{aligned} fYk(y)=(k1)!λkyk1eλy,y0, 这就是有名的阶数是为k的埃尔朗分布
    • Y k Y_k Yk分布密度函数证明:
  3. 泊松过程的分裂与合并
  • 类似伯努利分布的分裂合并,
  • 例子:
    • 分裂:当有一个到达的时候,我们选择保留下来(概率为p),或者抛弃(概率为1-p)。这样就分裂成了两个泊松分布。
    • 合并:两个相互独立的泊松分布过程(参数分别是 λ 1 和 λ 2 \lambda_1 和 \lambda_2 λ1λ2,这两个原始的过程同时进行,当有其中一个到达的时候就记为由一个新的到达,强度为 λ 1 + λ 2 \lambda_1+\lambda_2 λ1+λ2
其他
  1. 伯努利过程和泊松过程,随机变量之和
    • 利用伯努利和泊松过程的分裂和合并的性质可以得到独立随机变量之和的某些性质。
    • 随机数个 独立随机变量的性质:
      N , X 1 , X 2 , . . . X n N,X_1,X_2,...X_n N,X1,X2,...Xn是独立随机变量,其中N取非负整数。当N>0时,定义 Y = X 1 + . . . + X n Y = X_1+...+X_n Y=X1+...+Xn。当N = 0时,定义Y = 0。
      • 回忆一下:二项分布(m中发生了q次的概率),几何分布(第1次成功的试验次数),指数分布
      • 如果 X i X_i Xi的分布是参数为p 的伯努利分布,N的分布是参数为m 和 q 的二项分布,则Y的分布是参数为m 和pq的二项分布
      • 如果 X i X_i Xi是参数为p的伯努利分布,N的分布式是参数为 λ \lambda λ泊松分布,则Y是参数为 λ p \lambda p λp泊松分布
      • 如果 X i X_i Xi是参数为p的几何分布,N的分布式是参数为q的几何分布,则Y是参数为pq几何分布
      • 如果是 X i X_i Xi λ \lambda λ指数分布,N的分布式是参数为p的几何分布,则Y是参数为 λ q \lambda q λq指数分布
      • 回忆一下:
        • 二项分布(m中发生了q次的概率,参数p,m(总次数)),
        • 几何分布(第1次成功的试验次数,,参数p),
        • 指数分布(第一次成功的时间T,参数 λ \lambda λ),
        • 泊松分布(时间t内发生了q次的概率,参数 λ = n p \lambda=np λ=np)
        • 伯努利分布(一次试验成功的概率,参数p)
  2. 随机插入的悖论
    • 随机
  3. 小结:
    • 伯努利过程涉及在离散时间,在每一步离散时间中都有一个常值的到达概率p.
    • 泊松过程涉及连续时间,对于一个长的为 σ > 0 \sigma>0 σ>0的小区间,都有一个了到达的近似概率 λ σ \lambda \sigma λσ.
    • 伯努利过程和泊松过程涉及的重要变量分布
参数使用情况伯努利过程泊松过程
概率p;强度 λ \lambda λ给定长度时间间隔,到达次数K的分布列二项分布: P X ( k ) = C n k p k ( 1 − p ) n − k P_{X}(k)=C_{n}^{k}p^{k}(1-p)^{n-k} PX(k)=Cnkpk(1p)nk泊松分布: P ( t ) = e − λ t ( λ t ) k k ! P(t)=e^{-\lambda t}\frac{(\lambda t)^{k}}{k!} P(t)=eλtk!(λt)k
概率p,强度 λ \lambda λ第K次到达的时间k阶帕斯卡分布: P Y k ( t ) = C k − 1 t − 1 P k ( 1 − p ) t − k , t = k , k = 1 , . . . , P_{Y_k}(t)=C_{k-1}^{t-1}P^k(1-p)^{t-k},t=k,k=1,..., PYk(t)=Ck1t1Pk(1p)tk,t=k,k=1,...,k阶埃尔朗分布: f Y k ( y ) = λ k y k − 1 e − λ y ( k − 1 ) ! , y ≥ 0 f_{Y_{k}}(y)=\frac{\lambda^{k}y^{k-1}e^{-\lambda y}}{(k-1)!},y\geq0 fYk(y)=(k1)!λkyk1eλy,y0
概率p,强度 λ \lambda λ相邻到达时间T几何分布: P ( k ) = p ( 1 − p ) k − 1 P(k)=p(1-p)^{k-1} P(k)=p(1p)k1指数分布: P ( t ) = λ e − λ t P(t)=\lambda e^{-\lambda t} P(t)=λeλt

习题:

6.1 伯努利过程:
1. 红绿货车问题:某单位由两辆货车,一辆是红色的,一辆是绿色的。现在一共有n个包裹需装到车上,装车的是hi后,每一个包裹都是独立的放到红色火车(以概率p)或绿色火车(以概率1-p)上,设R为红色车上的包裹个数,G表示绿色测皇上的包裹总个数
  • (a). 确定随机变量R的分布列,期望和方差值:
    • 答:
      • 二项分布: P R ( k ) = C n k p k ( 1 − p ) n − k P_{R}(k)=C_{n}^{k}p^{k}(1-p)^{n-k} PR(k)=Cnkpk(1p)nk
      • 期望: E ( R ) = n p E( R )=np E(R)=np
      • 方差: v a r ( R ) = n ( 1 − p ) p var(R)=n(1-p)p var(R)=n(1p)p
  • (b). 求第一次装车的时候也将一个包裹装上某辆车,一直到装完第n个包裹以后,这辆车上还只有一个包裹的概率
    • 答:
      • 红色车只有一个包裹: P 1 = n ( 1 − p ) n − 1 p P_{1}=n(1-p)^{n-1}p P1=n(1p)n1p
      • 绿色车只有一个包裹: P 2 = n ( p ) n − 1 ( 1 − p ) P_{2}=n(p)^{n-1}(1-p) P2=n(p)n1(1p)
      • P = P 1 + P 2 = n ( ( 1 − p ) n − 1 p + p n − 1 ( 1 − p ) P=P_{1}+P_{2}=n((1-p)^{n-1}p+p^{n-1}(1-p) P=P1+P2=n((1p)n1p+pn1(1p)
  • ©. 计算在装完货以后至少有一个火车只有一个包裹的概率。
    • 答:
      • 反面情况A:有一辆车上面一个包裹都没有
      • P ( A ) = n p n + n ( 1 − p ) n P(A)= np^{n}+n(1-p)^{n} P(A)=npn+n(1p)n
      • P = P (   A ) = 1 − n ( p n + ( 1 − p ) n ) P = P(~A) = 1-n(p^{n}+(1-p)^{n}) P=P( A)=1n(pn+(1p)n)
  • (d). 计算R-G 的期望和方差:
    • 答:
      • R + G = n = > G = n − R − − − − ( 1 ) R+G =n =>G= n-R ----(1) R+G=n=>G=nR(1)
      • 由(1)可得: R − G = 2 R − n R-G =2R-n RG=2Rn
      • R的分布如题(a), 则 P R − G ( k ) = C n 2 k − n p 2 k − n ( 1 − p ) 2 n − 2 k P_{R-G}(k)= C_{n}^{2k-n}p^{2k-n}(1-p)^{2n-2k} PRG(k)=Cn2knp2kn(1p)2n2k
  • (e). 假设 n ≥ 2 n\geq2 n2,在前两个包裹都装在红色车的条件下求出随机变量R的条件分布列。
    • 答:
      • 因为伯努利过程是相互独立的,所以另外n-2个包裹的去向都符合伯努利分布: P R ( k ) = C n − 2 k − 2 p k − 2 ( 1 − p ) n + 2 − k P_{R}(k)=C_{n-2}^{k-2}p^{k-2}(1-p)^{n+2-k} PR(k)=Cn2k2pk2(1p)n+2k
2. 大卫在每次小测验中不及格的概率为 1 4 \frac{1}{4} 41,并且各次小测验的结果是相互独立。
  • (a). 大卫在6次测验中恰好不及格2次的概率
    • 答:
      • P ( k ) = C 6 2 ( 1 4 ) 2 ( 3 4 ) 4 = 1215 256 P(k) = C_{6}^{2}(\frac{1}{4})^{2}(\frac{3}{4})^{4}=\frac{1215}{256} P(k)=C62(41)2(43)4=2561215
  • (b). 计算大卫在不及格3次之前通过的平均测验次数
    • 答:
      • k阶帕斯卡分布: P Y k ( t ) = C t − 1 k − 1 p k ( 1 − p ) t − k , t = k , k = 1 , . . . , P_{Y_k}(t)=C_{t-1}^{k-1}p^k(1-p)^{t-k},t=k,k=1,..., PYk(t)=Ct1k1pk(1p)tk,t=k,k=1,...,
      • k = 3 , p = 1 4 ; P ( t ) = C t − 1 2 ( 1 4 ) 3 ( 3 4 ) t − 3 k =3, p = \frac{1}{4}; P(t)=C_{t-1}^{2}(\frac{1}{4})^3(\frac{3}{4})^{t-3} k=3,p=41;P(t)=Ct12(41)3(43)t3
      • 平均测验值 : E = 3 p = 4 : E=\frac{3}{p}=4 :E=p3=4 ;
  • ©. 计算大卫恰好在第8次和第9次测验时发生第二次和第三次不及格的概率。
    • 答:
      • k阶帕斯卡分布: k 1 = 2 , k 2 = 3 ; P 1 ( t ) = ( t − 1 ) p 2 ( 1 − p ) t − 2 ; P 2 ( t ) = C t − 1 2 p 3 ( 1 − p ) t − 3 \begin{aligned} k_{1}&=2,k_{2}=3; \\ P_1(t)&=(t-1)p^{2}(1-p)^{t-2};\\P_2(t)&=C_{t-1}^{2}p^{3}(1-p)^{t-3} \end{aligned} k1P1(t)P2(t)=2,k2=3;=(t1)p2(1p)t2;=Ct12p3(1p)t3
      • P 1 ( 8 ) = 7 ( 1 4 ) 2 ( 3 4 ) 6 P_1(8)=7(\frac{1}{4})^{2}(\frac{3}{4})^{6} P1(8)=7(41)2(43)6
      • P 2 ( 9 ) = 14 ( 1 4 ) 3 ( 3 4 ) 6 P_2(9)=14(\frac{1}{4})^{3}(\frac{3}{4})^{6} P2(9)=14(41)3(43)6
  • (d). 计算大卫在连续2次通过测验之前连续2次不及格的概率
    • 答:我有点迷。。。。
      • P = ( 1 4 ) 2 ( 3 4 ) 2 P = (\frac{1}{4})^{2}(\frac{3}{4})^{2} P=(41)2(43)2
3. 计算机系统执行两个用户提交的任务,时间被划分成几个部分,每一个部分以 p I = 1 6 p_I=\frac{1}{6} pI=61的概率空闲,以 P B 5 6 P_B\frac{5}{6} PB65的概率忙碌。在忙碌时间,来自用户1(或者用户2)的任务被执行的概率分别为 p 1 ∣ B = 2 5 , p 2 ∣ B = 3 5 p_{1|B} = \frac{2}{5},p_{2|B} = \frac{3}{5} p1B=52,p2B=53,我们假设不同时间段的时间彼此独立。
  • (a). 计算在第4个时间段第一个执行用户1的任务概率
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值